# Upcoming Events

I will report on my joint work in progress with Lue Pan which proves that the part of the rational p-adic completed cohomology of a general Shimura variety that is locally analytic with "sufficiently regular" infinitesimal weights is concentrated in the middle degree. I will begin with some…

We prove the Multiplicity One Conjecture for mean curvature flows of surfaces in R^3. Specifically, we show that any blow-up limit of such mean curvature flows has multiplicity one. This has several applications. First, combining our work with results of Brendle and Choi-Haslhofer-Hershkovits-…

Abstract

Abstract

Abstract

If Δ is a contractible compact d-manifold, then its boundary Σ will be a homology (d-1)-sphere, but the boundary need not be simply connected and Δ need not be homeomorphic to the d-disk. In joint work with Randal-Williams, we show that the topological group consisting of homeomorphisms of…

Automorphy lifting theorems establish situations in which Galois representations over \bar{Q_p} are automorphic if their residual representation has an automorphic lift. In 2018, Allen et. al. proved the first automorphy lifting theorem for n-dimensional Galois representations over a CM field…

The classical question of determining which varieties are rational has led to a huge amount of interest and activity. On the other hand, one can consider a complementary perspective - given a smooth projective variety whose nonrationality is known, how "irrational" is it? I will survey…