# The roller coaster through Landau damping

## Location

Abstract: Of great interest is to address the final state conjecture for the dynamics of charged particles near spatially homogeneous equilibria in a plasma, where particles are transported by the self-consistent electric field generated by the meanfield Coulomb's interaction. The long-range interaction generates waves that oscillate in time and disperse in space through the dispersion of a Schrodinger type equation, known as plasma oscillations or Langmuir waves. The classical notion of Landau damping refers to the damping of oscillations when particles travel at a resonant speed with the waves. The talk is to address this classical picture for the Vlasov-Poisson system with relativistic or bounded velocities. Based on a joint work with E. Grenier and I. Rodnianski.