Past Events
In this talk, we will present a martingale based neural network, SOC-MartNet, for solving high-dimensional Hamilton-Jacobi-Bellman (HJB) equations where no explicit expression is needed for the Hamiltonian $\inf_{u \in U} H(t,x,u, z,p)$, and stochastic optimal control problems (SOCP) with…
Abstract: In this talk, I will give an overview of statistical physics and give an introduction to spin glasses.
Unlike many classical models , like the Ising model, which has structurally regular properties, spin glasses
are pattern-less with an irregular distribution.…
Harder-Narasimhan (HN) theory gives a structure theorem for principal G bundles on a smooth projective curve. A bundle is either semistable, or it admits a canonical filtration whose associated graded bundle is semistable in a graded sense. After reviewing recent advances in extending HN theory…
I'll start by defining the Chow ring, which is an important invariant of a scheme (or stack). Next, I will define the Picard variety and Picard stack of a curve, and then introduce their universal versions $J^d_g$ and $\mathscr{J}^d_g$ over the moduli space of curves $M_g$. Recently, progress…
Unlike for pseudodifferential operators, showing even just L²-boundedness for a general Fourier Integral Operators is nontrivial. This is especially true if the corresponding canonical relation cannot be written as a graph over the cotangent bundle of the source manifold. We will have a look at…
- Beatrice Yormark Lecture
The moduli space M_g of genus g curves (or Riemann surfaces) is a central object of study in algebraic geometry. Its cohomology is important in many fields. For example, the cohomology of M_g is the same as the cohomology of the mapping class group, and is also related to spaces of modular forms…
The moduli space M_g of genus g curves (or Riemann surfaces) is a central object of study in algebraic geometry. Its cohomology is important in many fields. For example, the cohomology of M_g is the same as the cohomology of the mapping class group, and is also related to spaces of modular forms…
Consider the incidence graph between the points of the unit square and the set of δ x 1 tubes for some δ > 0. What is the size n = n(δ) of the largest induced matching in this graph? We use ideas from projection theory to study this problem and show a non-trivial upper bound on n(δ). As a…
I will continue discussing the virtual fundamental class on the moduli space of stable maps with special attention to our example: counting rational curves on quintic 3-folds.
Ben