Wednesday, June 12, 2019 3:15 PM
Brice Loustau (TU Darmstadt)

I will present effective methods to compute equivariant harmonic maps, both discrete and smooth. The main setting will be equivariant maps from the universal cover of a surface into a nonpositively curved space. By discretizing the theory appropriately, we show that the energy functional is strongly convex and derive the convergence of the discrete heat flow to an energy minimizer. We also examine center of mass methods after showing a generalized mean value property for smooth harmonic maps. We conclude by showing convergence of our method to smooth harmonic maps as one takes finer and finer meshes. We feature a concrete illustration of these methods with Harmony, a computer software with a graphical user interface that we developed in C++, whose main functionality is to numerically compute and display equivariant harmonic maps.