1. Let \(A = \mathbb{C}[X, Y]/(X^2, XY) \).
 (a) (3 pts) Describe all prime ideals of \(A \).
 (b) (3 pts) Show that the localization \(A_Y \) is an integral domain.
 (c) (4 pts) For which prime ideals \(p \) of \(A \) is \(A_p \) an integral domain?

2. Let \(k \) be a field.
 (a) (5 pts) Show that if \(f \in k[x] \) is monic of degree \(n > 0 \) with no repeated irreducible factors and \(f(0) \neq 0 \), then there is exactly one conjugacy class of elements \(M \in \text{GL}_n(k) \) with characteristic polynomial \(f \). \textbf{Hint:} one approach is to use the rational canonical form over \(k \).
 (b) (5 pts) Find a representative of each conjugacy class of \(g \in \text{GL}_3(R) \) such that \(g^5 = 1 \).

3. (10 pts) Let \(G = \text{SL}_2(F_p) \) with \(p \) an odd prime. Prove \(|G| = p(p^2 - 1) \), and that the Sylow \(\ell \)-subgroups of \(G \) are cyclic for every odd prime \(\ell \) dividing \(|G| \). \textbf{Hint:} \(F_p^\times \subset GL_2(F_p) \).

4. (a) (4 pts) Explain why \(\mathbb{Z}[\sqrt{19}] \) is the integral closure of \(\mathbb{Z} \) in \(\mathbb{Q}(\sqrt{19}) \).
 (b) (3 pts) For an odd prime \(p \neq 19 \), explain why \(p\mathbb{Z}[\sqrt{19}] \) is prime if and only if 19 is not a square mod \(p \).
 (c) (3 pts) Using that \(19 \equiv 6^2 \mod 17 \), factor \(17\mathbb{Z}[\sqrt{19}] \) into a product \(pq \) of two prime ideals.

5. For \(n \geq 1 \), let \(S_n \) act on \(\mathbb{C}^n \) by permutation of the standard basis, and let \(V_n := \{(x_1, \ldots, x_n) \in \mathbb{C}^n : \sum x_i = 0\} \) be the natural \(S_n \)-stable hyperplane in \(\mathbb{C}^n \).
 (a) (2 points) For \(n \geq 2 \) and the inclusion \(S_{n-1} \hookrightarrow S_n \) onto the stabilizer of a choice of \(i \in \{1, \ldots, n\} \), show \(V_n \simeq V_{n-1} \oplus \mathbb{C} \) as \(S_{n-1} \)-representations.
 (b) (3 points) For \(n \geq 1 \), show \(V_n \) is an irreducible \(S_n \)-representation. \textbf{(Possible approach: work by induction on \(n \), and use (a).)}
 (c) (3 points) For \(n \geq 2 \), show \(\wedge^2 V_n \simeq (\wedge^2 V_{n-1}) \oplus V_{n-1} \) as \(S_{n-1} \)-representations.
 (d) (2 points) For \(n \geq 2 \), show \(\wedge^2 V_n \) is an irreducible \(S_n \)-representation. \textbf{(Hint:} induction on \(n \).)
1. (10 pts) Let V be a finite-dimensional vector space over \mathbb{C}, and let $B : V \times V \to \mathbb{C}$ be a non-degenerate symmetric bilinear form. Let $T : V \to V$ be a nilpotent linear transformation that is skew-symmetric with respect to B: for all $x, y \in V$ we have

$$B(Tx, y) = -B(x, Ty).$$

If dim($\ker T$) = 1, deduce dim V is odd.

2. (a) (3 points) Prove $x^7 - 15$ and $(x^7 - 1)/(x - 1) = x^6 + x^5 + \cdots + x + 1$ are irreducible over \mathbb{Q}.

(b) (7 points) Describe (with proof) the splitting field K/\mathbb{Q} of $x^7 - 15$, and describe the group $\text{Gal}(K/\mathbb{Q})$, and describe its action on K.

3. Let K/k be a finitely generated extension of fields with characteristic 0.
 (a) (5 pts) If k'/k is an algebraic extension inside K then show $[k' : k]$ is finite.
 (b) (5 pts) Suppose k is algebraically closed in K; i.e., anything in K algebraic over k belongs to k. Show that if ℓ/k is a finite extension then $K \otimes_k \ell$ is a field in which ℓ is algebraically closed. (Hint: use the primitive element theorem.)

4. (a) (5 pts) If A is an integrally closed noetherian domain with fraction field F and F'/F is a finite separable extension, explain why the integral closure of A in F' is finitely generated as an A-module. Identify where the hypotheses on A are used in your argument. (Hint: use the trace to show that the integral closure lies in a finitely-generated A-module.)

 (b) (2 pts) State the Noether normalization theorem for integral domains finitely generated over \mathbb{C}, and its geometric interpretation.

 (c) (3 pts) If R is an integral domain finitely generated over \mathbb{C} with fraction field K, explain why the integral closure of R in K is finitely generated as an R-module. (Hint: use (a) and (b).)

5. Let A be a commutative ring, and M an A-module. Recall that M is called injective if for any injection of A-modules $N \to N'$ and A-linear $f : N \to M$ there is an A-linear $f' : N' \to M$ satisfying $f'|_N = f$.

 (a) (2 pts) Show that every A-module with one generator is isomorphic to A/J for some ideal J of A.

 (b) (2 pts) Show that every A-module with one generator is isomorphic to A/J for a unique ideal J of A.

 (c) (6 pts) Assume that $\text{Ext}_A^1(A/J, M) = 0$ for every ideal J of A. Show that M is injective. (Hint: Zorn’s Lemma and (a).)