A1. (10 pts) Suppose G is a group of odd order and suppose p is the smallest prime dividing $|G|$. If the p-Sylow subgroup $S \subset G$ is normal and has order p^2 or p, prove that S is contained in the center of G.

A2.
(a) (6 pts) Find the Galois groups of $x^6 - 2$ and $x^6 + 3$ over \mathbb{Q}.
(b) (4 pts) Find the Galois group of $x^6 - 2$ over \mathbb{F}_5 and \mathbb{F}_7.

A3. Let A be a commutative ring. For $f \in A$, take the definition of A_f to be via equivalence classes of fractions.

(a) (4 pts) Prove that A_f and $A[X]/(1 - Xf)$ are uniquely isomorphic as A-algebras.

(b) (6 pts) Let $g = f + n$ for nilpotent $n \in A$. Prove that A_f and A_g are uniquely isomorphic as A-algebras. (You do not need to use (a) for this.)

A4. Let n, m be integers $0 < m < n$ and with m dividing n. Let $R = \mathbb{Z}/n\mathbb{Z}$ and $M = R/mR$.

(a) (3 pts) Show that R is injective as a module over itself. (Hint: Zorn.)

(b) (7 pts) Compute $\text{Tor}_i^R(M, M)$ and $\text{Ext}_i^R(M, M)$ for all $i \geq 0$.

A5. Let k be a field with characteristic $p > 0$ and F a finitely generated extension field. A transcendence basis $\{x_1, \ldots, x_d\}$ of F over k is separating if the finite extension $F/k(x_1, \ldots, x_d)$ is separable. This problem proves such transcendence bases exist when k is perfect. Fix a transcendence basis $\{x_1, \ldots, x_d\}$.

(a) (4 pts) Let $n := [F : k(x_1, \ldots, x_d)]_i$ be the inseparable degree. Assume $n > 1$. Show there is $a \in F$ not separable over $k(x_1, \ldots, x_d)$ such that its $(T$-monic) minimal polynomial $f \in k(x_1, \ldots, x_d)[T]$ lies in $k[x_1, \ldots, x_d, T]$, and prove f is irreducible in $k[x_1, \ldots, x_d, T]$, and irreducible in $k(x_1, \ldots, x_{d-1}, T)[x_d]$ if f involves x_d.

(b) (4 pts) Assume k is perfect. For a and f as in (a), prove $\partial_{s_j}f \neq 0$ for some j; relabel so $j = d$. Prove that $\{x_1, \ldots, x_{d-1}, a\}$ is a transcendence basis of F over k, and use multiplicativity of inseparable degree to show $[F : k(x_1, \ldots, x_{d-1}, a)]_i < n$.

(c) (2 pts) Deduce the existence of a separating transcendence basis when k is perfect.
Fall 2014 Qualifying Exam, Algebra

Afternoon

B1. (10 pts) Find all abelian groups G for which there exists an exact sequence

$$0 \to \mathbb{Z} \oplus (\mathbb{Z}/3\mathbb{Z}) \to G \to \mathbb{Z} \oplus (\mathbb{Z}/3\mathbb{Z}) \to 0.$$

B2. Let $K = \mathbb{Q}(\alpha)$ with $\alpha^3 = 2$. The following proves that the integral closure \mathcal{O}_K of \mathbb{Z} in K is $\mathbb{Z}[\alpha]$. (In contrast, $L = \mathbb{Q}(\theta)$ with $\theta^3 = 10$ has $(1 + \theta + \theta^2)/3 \in \mathcal{O}_L$, so $\mathcal{O}_L \neq \mathbb{Z}[\theta]$. You needn’t show this.)

(a) (3 pts) Show $\mathbb{Z}[\alpha]$ has discriminant $-2^2 \cdot 3^3$, and deduce that $|\mathcal{O}_K : \mathbb{Z}[\alpha]|$ divides 6.

(b) (2 pts) For $x = c_0 + c_1 \alpha + c_2 \alpha^2$ with $c_i \in \mathbb{Q}$, compute the matrix for multiplication by x on K with respect to the ordered \mathbb{Q}-basis $\{1, \alpha, \alpha^2\}$ and obtain $N_{K/\mathbb{Q}}(x) = c_0^2 + 2c_1^3 + 4c_2^3 - 6c_0c_1c_2$, so $N_{K/\mathbb{Q}}(x) \equiv c_0 \pmod{2}$ if $x \in \mathbb{Z}[\alpha]$.

(c) (2 pts) If $x = c_0 + c_1(\alpha - 2) + c_2(\alpha - 2)^2$ with $c_i \in \mathbb{Z}$ then show $N_{K/\mathbb{Q}}(x) \equiv c_0 \pmod{3}$.

(Hint: $x = (c_0 - 2c_1 + 4c_2) + (c_1 - 4c_2)\alpha + c_2\alpha^2$.) Also show that $N_{K/\mathbb{Q}}(\alpha - 2) = -6$.

(d) (3 pts) Prove that $\mathcal{O}_K \cap (1/2)\mathbb{Z}[\alpha] = \mathbb{Z}[\alpha]$ and $\mathcal{O}_K \cap (1/3)\mathbb{Z}[\alpha] = \mathbb{Z}[\alpha]$, and deduce that $\mathcal{O}_K = \mathbb{Z}[\alpha]$. (Hint: $N_{K/\mathbb{Q}}(\alpha) = 2$ and $N_{K/\mathbb{Q}}(\alpha - 2) = -6$)

B3. Let G be a finite group, and let C_1, C_2, C_3 be three conjugacy classes in G.

(a) (6 pts) For any irreducible character χ of G, show that

$$\sum_{x \in C_1, y \in C_2, z \in C_3} \chi(xyz) = \frac{#C_1#C_2#C_3 \cdot \chi(C_1)\chi(C_2)\chi(C_3)}{\chi(1)^2}.$$

(Hint: The left side is the trace of $\sum \rho(xyz)$, where $\rho : G \to \text{GL}(V)$ has character χ.)

(b) (4 pts) Show that the set $\{(x, y, z) \in C_1 \times C_2 \times C_3 | xyz = 1\}$ has cardinality

$$\frac{#C_1#C_2#C_3}{#G} \sum_{\chi} \frac{\chi(C_1)\chi(C_2)\chi(C_3)}{\chi(1)}.$$

Here the sum runs over all irreducible characters of G.

B4. Let V be a nonzero finite-dimensional vector space over a field F. A linear endomorphism T of V is *semi-simple* if every T-stable subspace admits a T-stable linear complement.
(a) (4 pts) State the theorem on rational canonical form for \(T \), and deduce that \(T \) is semi-simple if and only if its minimal polynomial has no repeated monic irreducible factors, and that if \(F \) is algebraically closed then this is equivalent to diagonalizability of \(T \).

(b) (3 pts) Assume \(F \) is algebraically closed. State the theorem of Jordan canonical form for \(T \), and use it to prove that \(T = S + N \) for commuting \(F \)-linear endomorphism \(S \) and \(N \) of \(V \) that are respectively semi-simple and nilpotent.

(c) (3 pts) Prove that \(S \) and \(N \) as in (b) are unique.

B5. Let \(k \) be an algebraically closed field, and \(A \) and \(B \) domains finitely generated over \(k \).

(a) (3 pts) Let \(X \) be the space of maximal ideals of \(B \) (with the Zariski topology), and for \(x \in X \) let \(m_x \) be the corresponding maximal ideal in \(B \). For nonzero \(f \in A \otimes_k B \) show there is a dense open \(U \subseteq X \) so that the element \(f \mod m_x \in A \) is nonzero for all \(x \in U \). (Hint: write \(f \) as a finite sum of elementary tensors.)

(b) (4 pts) Prove that \(A \otimes_k R \) is a domain for any \(k \)-algebra domain \(R \). (Hint: reduce to the case where \(R \) is finitely generated over \(k \).)

(c) (3 pts) For any extension field \(K/k \), use Noether normalization to prove \(A \otimes_k K \) has the same dimension as \(A \).