1. MORNING (FALL, 2012)

(1) Let \(A\) be an \(n \times m\) matrix of integers, thus defining a linear map
\[f_A : \mathbb{Z}^m \rightarrow \mathbb{Z}^n. \]

Similarly, the transpose \(A^t\) of \(A\) defines a linear map
\[f_{A^t} : \mathbb{Z}^n \rightarrow \mathbb{Z}^m. \]

Prove that the cokernel of \(f_A\) and the cokernel of \(f_{A^t}\) have isomorphic torsion subgroups.

(2) Let \(G = \text{SL}_n(F_p)\) for a prime \(p\) and an integer \(n > 1\).

(i) Find a Sylow \(p\)-subgroup \(P\) of \(G\) and compute its order.

(ii) Give an explicit sequence of subgroups \(1 = P_0 \subset P_1 \subset P_2 \subset \cdots \subset P_m = P\) such that for all \(0 \leq i < m\), \(P_i\) is normal in \(P_{i+1}\) and the quotient \(P_{i+1}/P_i\) is abelian.

(3) Let \(R\) be a commutative ring, and \(M\) a free \(R\)-module of finite rank \(n > 0\).

(i) (3 pts) Let \(M^*\) be the dual module. For all \(i > 0\) prove that \(\text{Sym}^i(M)\) is free, and show that there is a unique bilinear pairing
\[\text{Sym}^i(M) \times \text{Sym}^i(M^*) \rightarrow R \]

 such that \((m_1 \ldots m_i, \ell_1 \ldots \ell_i) \mapsto \sum_{1 \leq j \leq i} s_{ij} \ell_j(m_{s(j)})\) for all \(m_j \in M\) and \(\ell_j \in M^*\), where \(S_i\) is the symmetric group on \([1, \ldots, i]\).

(ii) (2 pts) Prove that the linear map \(\text{Sym}^i(M^*) \rightarrow \text{Sym}^i(M)^*\) induced by the pairing in (i) is an isomorphism when \(i! \in R^\times\) (hint: use a basis of \(M\) to make bases of these symmetric powers that are “dual” to each other up to \(R^\times\)-multipliers), and for any prime \(p\) and \(M = R = F_p\) show that this map vanishes when \(i = p\).

(iii) (5 pts) Let \(0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0\) be a short exact sequence of finitely generated free \(R\)-modules, with \(M\) of rank \(n > 0\). For any integer \(0 \leq a \leq n\), let \(X_a \subset \wedge^n(M)\) be the R-submodule generated by elementary wedge products involving at least \(a\) factors from \(M'\) (and define \(X_{n+1} = 0\)). Construct a natural isomorphism \(\wedge^a(M') \otimes_R \wedge^{n-a}(M'') \simeq X_a/X_{a+1}\) for all \(0 \leq a \leq n\). State and prove a precise functorial property of this isomorphism that justifies calling it “natural”.

(4) Let \(R\) be a commutative ring.

(i) (4 pts) Prove any surjective homomorphism of \(R\)-modules \(f : R^n \rightarrow R^n\) is injective.

(ii) (4 pts) Suppose \(R\) is Noetherian and \(f : R \rightarrow R\) is a ring homomorphism. Prove again that \(f\) is injective if it is surjective. (Hint: consider the kernels of iterates of \(f\).)

(iii) (2 pts) Give a counterexample to (ii) if the Noetherian hypothesis is dropped.

(5) (i) (5 pts) Prove that the prime ideals of \(Q[2^{1/3}] \otimes_Q Q[2^{1/3}]\) are principal by exhibiting an explicit generator for each one (written as a sum of elementary tensors).

(ii) (5 pts) Do the same for \(F_7[\alpha] \otimes_{F_7} F_7[\alpha]\), where \(\alpha^3 = 2\).
6. Let $f : B \to A$ be a surjective homomorphism of R-algebras (R a commutative ring) and let $J = \ker(f)$.

 (i) (2 pts) For any R-algebra R', let $f' : B' \to A'$ be the R'-algebra homomorphism induced by applying scalar extension $R' \otimes_R \cdot$. Show that f' is surjective and that $J \otimes_{R} R' \to B'$ has image $\ker(f')$.

 (ii) (3 pts) Prove that $J \otimes_{R} R' \to k'$ is injective (hence an isomorphism) if A is R-flat, and give an example with $R = \mathbb{C}[x]$ and some A that is not R-flat for which this injectivity fails.

 (iii) (5 pts) Suppose R and B are local Noetherian, and A is R-flat. If the structure map $h : R \to B$ is local (i.e., $h(m_R) \subset m_B$) and $f \mod m_R$ is an isomorphism, prove that f is an isomorphism. Give a counterexample if A is not assumed to be R-flat.

7. Let E be a field of characteristic zero.

 (i) (4 pts) Consider a prime q and an element $b \in E^x$ that isn’t a qth power. Let $E' = E(a)$ with $a^q = b$ and $E' \neq E$. Show that $X^q - b$ is reducible over E if and only if $[E' : E] < q$, and that in such cases E' contains a primitive qth root of unity. Hint: If $1 < d = [E' : E] < q$ then apply the norm $N_{E'/E}$ to the equation $a^d = b$ to infer that b has a qth root in E, and compare it to a.

 (ii) (3 pts) If K/E is a Galois extension of prime degree p and E'/E is an extension such that K does not admit an E-embedding into E' then show that KE'/E' is Galois of degree p and the restriction map $\text{Gal}(KE'/E') \to \text{Gal}(K/E)$ is an isomorphism. (This does not use part (i).)

 (iii) (3 pts) Let E be a subfield of R and let K/E be a finite Galois extension of odd degree > 1. Prove that K cannot be E-embedded into a radical tower that is a subfield of R. (Hint: Use group theory to reduce to the case when K/E has prime degree $p > 2$, and use (i) and (ii) to obtain a contradiction by using that R does not contain nontrivial roots of unity of odd prime order.)

8. Suppose A is a Noetherian ring.

 (i) (5 pts) Prove that the ring of formal power series $A[x]$ is also Noetherian.

 (ii) (5 pts) Let $I = (a_1, \ldots, a_n)$ be an ideal of A. Let \hat{A} be the completion of A for the I-adic topology. Prove the existence of a surjective ring homomorphism $A[[x_1, \ldots, x_n]] \to \hat{A}$, and deduce that \hat{A} is Noetherian.

9. Let G be a group, V a nonzero finite-dimensional vector space over an algebraically closed field k (allowing $\text{char}(k) > 0$), and $\rho : G \to \text{GL}(V)$ a representation. Let $E = \text{End}_G(V)$ be the algebra of endomorphisms of V commuting with $\rho(g)$ for all $g \in G$. Say V is decomposable if V is isomorphic to a direct sum $V_1 \oplus V_2$ of two nonzero G-representations.
(i) (4 pts) Prove that \(V \) is not decomposable if and only if every element of \(E \) is (uniquely) expressible in the form \(S + N \), where \(S \) is a scalar transformation (i.e. a multiple of the identity) and \(N \) is nilpotent. (Hint: Adapt the proof of Schur’s lemma, using generalized eigenspaces.)

(ii) (3 pts) Suppose that \(V \) is not decomposable. Show that every element of \(E \) is either invertible or nilpotent, and prove that the nilpotent elements of \(E \) form a two-sided ideal \(I \) inside \(E \).

(iii) (3 pts) Prove that \(I^n = 0 \) for some \(n \geq 1 \) (i.e., \(x_1 \ldots x_n = 0 \) with any \(x_i \in I \)).

(10) Let \(G = \text{SL}_3(\mathbb{F}_p) \), where \(p \) is an odd prime. Let \(\ell \) be a prime divisor of \(p^2 + p + 1 \).

(i) (5 pts) Suppose \(\ell > 3 \). Prove that the \(\ell \)-Sylow subgroups of \(G \) are cyclic.

(ii) (5 pts) Suppose that \(\ell = 3 \). Prove that the \(\ell \)-Sylow subgroups of \(G \) are not cyclic.