MORNING ALGEBRA QUAL AUTUMN 2011

(1) Let p be a prime, $G = \text{GL}_3(\mathbb{Z}/p^5\mathbb{Z})$.
 (i) Show that the natural map $G \to \text{GL}_3(\mathbb{Z}/p\mathbb{Z})$ is surjective, and compute the order of the kernel.
 (ii) Compute the size of G, and describe an explicit p-Sylow subgroup of G.

(2) Prove that an algebraically closed field of characteristic zero does not have an automorphism of odd prime order p. (Hint: Show that the pth roots of unity would belong to the fixed field, and use norms.)

(3) (i) Let R be a commutative Noetherian integral domain. Prove that any nonzero nonunit is a finite product of irreducible elements. (Here an irreducible is a nonzero nonunit p such that in any factorization $p = xy$, x or y is a unit.)
 (ii) Let R be a commutative Noetherian ring. Prove that every ideal $I \neq R$ contains a finite product $P_1 \ldots P_k$ where P_i are prime ideals satisfying $I \subset P_i$.

(4) Let G be a finite group and H a subgroup of index 2.
 (i) Let V be an irreducible complex representation of G. Show that the restriction of V to H either remains irreducible or is the direct sum of two non-isomorphic irreducible representations.
 (ii) Assume that whenever two elements of H are conjugate in G, they are conjugate in H. Prove that the restriction of every irreducible complex representation of G to H remains irreducible.

(5) Let p be a prime.
 (i) Construct a projective resolution of $\mathbb{Z}/p\mathbb{Z}$ as a $\mathbb{Z}/p^2\mathbb{Z}$-module, and use it to compute $\text{Ext}_1^{Z/p^2Z}(\mathbb{Z}/pZ, \mathbb{Z}/pZ)$ for $i > 0$.
 (ii) Prove that $\mathbb{Z}/p^2\mathbb{Z}$ is injective as a module over itself. Compute $\text{Ext}_1^{Z/p^2Z}(\mathbb{Z}/pZ, \mathbb{Z}/pZ)$ for $i > 0$ using a suitable injective resolution.
(1) Let M be a finitely generated nonzero module over a ring R and let I be an ideal of R.

(i) Let $\varphi : M \to M$ be an R-module endomorphism with $\varphi(M) \subset IM$. Prove there are $a_j \in I^j$ and $n \geq 1$ with the property that

$$\varphi^n + a_1\varphi^{n-1} + \cdots + a_n = 0,$$

as endomorphisms of M. (Hint: choose generators for M and use “linear algebra.”)

(ii) Suppose that I is contained in every maximal ideal of R. Prove Nakayama’s lemma: $IM \neq M$.

(2) Let $G = SL_2(\mathbb{F}_3)$. It is a group of order 24.

(i) Show that $G/\{\pm I\}$ is isomorphic to the alternating group A_4. Hint: consider the action of G on one dimensional subspaces of \mathbb{F}_3^2 or the conjugation action of G on its set of 3-Sylow subgroups.

(ii) Show that G has three irreducible complex representations of degree 2. Hint: You may use without proof the fact that G has 7 conjugacy classes.

(3) Let $G \subset GL(n, K)$ be a finite p-group, where K is a field of characteristic p. (K is not assumed to be finite.) Show that G fixes a nonzero vector in its action on K^n. (Hint: consider first the action of the center of G, and think about minimal polynomials of elements of G.)

(4) Let A be a finitely generated integral domain over a field k, and G a finite group acting on A as a k-algebra.

(i) Prove that A is a finitely generated module over the k-subalgebra A^G. (Hint: consider $\prod_{g \in G} (X - g(a))$ for $a \in A$.)

(ii) Prove A^G is a finitely generated k-algebra.

(5) Suppose the polynomial $f(X) = X^4 + aX^2 + b \in \mathbb{Q}[X]$ is irreducible over the rational numbers. Note the roots of $f(X)$ have the form $\pm \alpha, \pm \beta$. Let E denote a splitting field of $f(X)$, and let $G = \text{Gal}(E/\mathbb{Q})$ be the Galois group of the polynomial $f(X)$.

(i) Show that $|G| = 4$ or 8 and if $|G| = 4$ then only the identity element of G fixes a root of $f(X)$.

(ii) Show that G is the direct product of two cyclic groups of order 2 if and only if b is a square in \mathbb{Q}.

(iii) Show that G is cyclic of order 4 if and only if $\frac{a^2 - 4b}{b}$ is a square in \mathbb{Q}.