(1) (i) Let G be a finite group of order n, and let $\rho : G \to \text{Sym}(G)$ be the homomorphism that arises from G acting on itself by left translation. Let $g \in G$ have order m. Prove that the sign of $\rho(g)$ is $(-1)^{n+n/m}$.

(ii) Let G be a finite group of order $2k$, with k odd. Prove that G is a semidirect product $N \rtimes (\mathbb{Z}/2\mathbb{Z})$, where N has order k. Hint: Using part (i), construct a nontrivial homomorphism $G \to \mathbb{Z}/2\mathbb{Z}$.

(2) Let G be a group, and k a field.

(i) Define the group algebra $k[G]$, and briefly explain why a k-linear representation of G is “the same” as a left $k[G]$-module.

(ii) Explain how to make $A \otimes_k B$ naturally into an associative k-algebra for any two associative k-algebras A and B, and construct a natural k-algebra isomorphism $k[G] \otimes_k k[H] \simeq k[G \times H]$ for any two groups G and H.

(iii) For an associative k-algebra A, define its opposite algebra A^{opp} to have underlying k-vector space A but the multiplication law $a \times a' := a'a$ (“flipped around”). Explain briefly why this is is an associative k-algebra, and for $A = k[G]$ prove that $A^{\text{opp}} \simeq A$. (Hint: use inversion in G).

(3) Suppose P is a prime ideal of $\mathbb{C}[x, y]$. Show that $P = (0)$, or $P = (f)$ where f is an irreducible polynomial, or $P = (x - a, y - b)$, where a and b are complex numbers.

Hint. The following intermediate step may be useful. If P contains two irreducibles f, g, not multiples of each other, use the Euclidean algorithm in $\mathbb{C}[(y)][x]$ to find a nonzero $h \in (f, g)$ so that $h \in \mathbb{C}[y]$.

(4) Let $f = X^3 - 2 \in \mathbb{Z}[X]$.

(i) Prove f is irreducible over \mathbb{Q} and that its splitting field K/\mathbb{Q} has Galois group S_3.

(ii) For each subgroup H of S_3, determine with proof the corresponding field K^H.

(iii) Prove that the splitting field of f over \mathbb{F}_5 is quadratic and over \mathbb{F}_7 is cubic.

(5) Let $G = \text{GL}(2, \mathbb{F}_q)$, where $q = p^n$, p prime. Let Π be the set of one-dimensional subspaces in $V = \mathbb{F}_q^2$. Since G acts on V by matrix multiplication, it acts on Π.

(i) Show that if $\ell \in \Pi$ then the stabilizer of ℓ in G contains a unique p-Sylow subgroup of G. How many p-Sylow subgroups does G have, and what is their order?

(ii) Prove that if ℓ_1, ℓ_2 and ℓ_3 are three distinct one-dimensional subspaces of V, then there is an element g of G such that $g\ell_1 = \mathbb{F}_q \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $g\ell_2 = \mathbb{F}_q \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $g\ell_3 = \mathbb{F}_q \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

1
(c) Show that if P_1, P_2 and P_3 are three distinct p-Sylow subgroups of G, and if Q_1, Q_2 and Q_3 are another three distinct p-Sylow subgroups of G, then there exists a $g \in G$ such that
\[gP_1g^{-1} = Q_1, \quad gP_2g^{-1} = Q_2, \quad gP_3g^{-1} = Q_3. \]
(1) Let G be a subgroup of a finite p-group H (p a prime) such that the natural homomorphism $G \to H/[H,H]$ is surjective. Prove that $G = H$ by induction on $|H|$ as follows:

(i) Suppose N is any nontrivial normal subgroup of H; show (using the inductive assumption) that $G \cdot N = H$.

(ii) Let Z be the center of H. Using (i) we have $G \cdot Z = H$; explain why $G \cap Z$ cannot be trivial. Now set $N = G \cap Z$ in (i).

(2) Let G be a finite group and $K \subset L$ an extension of fields of any characteristic. For a K-vector space W, let W_L denote $L \otimes_K W$. Let V, V' be n-dimensional K-linear representations of G (with $n \geq 1$).

(i) Prove that there is a nonzero $K[G]$-linear map $V' \to V$ if there is a nonzero $L[G]$-linear map $V'_L \to V_L$.

(ii) Prove (for any $N \geq 1$) that a nonzero polynomial over K in N variables cannot vanish on K^N if K is infinite, and deduce that if K is infinite then

$$V'_L \cong V_L \text{ as } L[G]\text{-modules} \implies V' \cong V \text{ as } K[G]\text{-modules}.$$

(3) Let K be a field and L, L' two finite extensions of K.

(i) Prove that if L/K is separable then $L \otimes_K L'$ is isomorphic to a product $\prod_{i=1}^r L'_i$ of finitely many fields. (Hint: use the primitive element theorem to write $L = K[t]/(f)$ for a suitable monic f.)

(ii) Give an example to show this need not be true without the separability assumption.

(4) Let A be a commutative ring. We say an A-module M is finitely presented if it is isomorphic to the cokernel of an A-module homomorphism $A^{\oplus m} \to A^{\oplus n}$ for some $m, n \geq 1$.

(i) Let B be a flat A-algebra, M a finitely presented A-module, and N any A-module. Prove the natural map $\text{Hom}_A(M, N) \otimes_A B \to \text{Hom}_B(M \otimes_A B, N \otimes_A B)$ is an isomorphism.

(ii) Suppose

$$0 \to M' \to M \to M'' \to 0$$

is a short exact sequence of A-modules. Suppose that for each maximal ideal $m \subset A$, the localized sequence

$$0 \to M'_m \to M_m \to M''_m \to 0$$

is split. If M'' is finitely presented, show that (*) is split.

Hint: Prove (*) splits if and only if the map $\text{Hom}_A(M'', M) \to \text{Hom}_A(M'', M'')$ induced by the right map $M \to M''$ of (*) is surjective.
(5) Let F be a field, and let V be the 4-dimensional vector space F^4 with the skew-symmetric bilinear form

$$\langle x, y \rangle = x_1 y_3 + x_2 y_4 - x_3 y_1 - x_4 y_2.$$

A subspace U of V is isotropic if $\langle u_1, u_2 \rangle = 0$ for $u_1, u_2 \in U$. For example, the two-dimensional subspace U_0 of $x = (x_1, x_2, x_3, x_4)$ with $x_3 = x_4 = 0$ is isotropic. Let G be the group of $g \in \text{GL}_4(F)$ such that $\langle gx, gy \rangle = \langle x, y \rangle$ for all $x, y \in V$.

(a) Prove that if U is a two-dimensional isotropic subspace then there exists $g \in G$ such that $gU = U_0$. *Hint:* let u_1, u_2 be any basis of U. Show that there exist v_1 and v_2 such that $\langle v_1, v_2 \rangle = 0$ and $\langle u_i, v_j \rangle = \delta_{ij}$.

(b) Suppose that $F = \mathbb{F}_q$. Show that the number of two dimensional isotropic subspaces of V is $(q^2 + 1)(q + 1)$. *Hint:* First count the number of pairs (u_1, u_2) so that u_1, u_2 are linearly independent and $\langle u_1, u_2 \rangle = 0$.