ALGEBRA QUALIFYING EXAM, FALL 2009, PART I

1. Let k be a finite field of size q.

 (a) Prove that the number of \(2 \times 2\) matrices over k satisfying \(T^2 = 0\) is \(q^2\).

 (b) Prove that the number of \(3 \times 3\) matrices over k satisfying \(T^3 = 0\) is \(q^6\).

2. (a) Prove that if \(K\) is a field of finite degree over \(\mathbb{Q}\) and \(x_1, \ldots, x_n\) are finitely many elements of \(K\) then the subring \(\mathbb{Z}[x_1, \ldots, x_n]\) they generate over \(\mathbb{Z}\) is not equal to \(K\). (Hint: Show they all lie in \(O_K[1/a]\) for a suitable nonzero \(a\) in \(O_K\), where \(O_K\) denotes the integral closure of \(\mathbb{Z}\) in \(K\).)

 (b) Let \(m\) be a maximal ideal of \(\mathbb{Z}[x_1, \ldots, x_n]\) and \(F = \mathbb{Z}[x_1, \ldots, x_n]/m\). Use (a) and the Nullstellensatz to show that \(F\) cannot have characteristic 0, and then deduce for \(p = \text{char}(F)\) that \(F\) is of finite degree over \(\mathbb{F}_p\) (so \(F\) is actually finite).

3. Let \(E\) be the splitting field of

 \[f(x) = \frac{(x^7 - 1)}{(x - 1)} = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1\]

 over \(\mathbb{Q}\). Let \(\zeta\) be a zero of \(f(x)\), i.e. a primitive seventh root of 1.

 (a) Show that \(f(x)\) is irreducible over \(\mathbb{Q}\). (Hint: consider \(f(y + 1)\) and use Eisenstein’s criterion.)

 (b) Show that the Galois group of \(E/\mathbb{Q}\) is cyclic, and find an explicit generator.

 (c) Let \(\beta = \zeta + \zeta^2 + \zeta^4\). Show that the intermediate field \(\mathbb{Q}(\beta)\) is actually \(\mathbb{Q}(\sqrt{-7})\).

 (Hint: first show that \([\mathbb{Q}(\beta) : \mathbb{Q}] = 2\) by finding a linear dependence over \(\mathbb{Q}\) among \(\{1, \beta, \beta^2\}\).)

 (d) Let \(\gamma_q = \zeta + \zeta^q\). Find (with proof) a \(q\) such that \(\mathbb{Q}(\gamma_q)\) is a degree 3 extension of \(\mathbb{Q}\).

 (Hint: use (b).) Is this extension Galois?

4. Let \(G\) be a nontrivial finite group and \(p\) be the smallest prime dividing the order of \(G\). Let \(H\) be a subgroup of index \(p\). Show that \(H\) is normal. (Hint: If \(H\) isn’t normal, consider the action of \(G\) on the conjugates of \(H\).)

5. Let \(G\) be a finite group and \(\pi : G \to \text{GL}(V)\) a finite-dimensional complex representation. Let \(\chi\) be the character of \(\pi\). Show that the characters of the representations on \(V \otimes V\), \(\text{Sym}^2(V)\) and \(\wedge^2(V)\) are \(\chi(g)^2\), \((\chi(g))^2 + \chi(g^2))/2\) and \((\chi(g)^2 - \chi(g^2))/2\). (Hint: Express \(\chi(g)^2\), \((\chi(g))^2 + \chi(g^2))/2\) and \((\chi(g)^2 - \chi(g^2))/2\) in terms of the eigenvalues of \(\pi(g)\).

Date: Thursday, September 17, 2009.
1. Let V be a vector space over a field F, and let $B : V \times V \to F$ be a symmetric bilinear form. This means that B is bilinear and $B(x, y) = B(y, x)$. Let $q(v) = B(v, v)$.

(a) Show that if the characteristic of F is not 2 then $B(v, w) = \frac{1}{2}(q(v + w) - q(v) - q(w))$. (This obviously implies that if $q = 0$ then $B = 0$.)

(b) Give an example where the characteristic of F is 2 and $q = 0$ but $B \neq 0$.

(c) Show that if the characteristic of F is not 2 or 3 and if $B(u, v, w)$ is a symmetric trilinear form, and if $r(v) = B(v, v, v)$, then $r = 0$ implies $B = 0$.

2. Let G be a finite group.

(a) Let $\pi : G \to GL(V)$ be an irreducible complex representation, and let χ be its character. If $g \in G$, show that $|\chi(g)| = \dim(V)$ if and only if there is a scalar $c \in \mathbb{C}$ such that $\pi(g)v = cv$ for all $v \in V$.

(b) Show that g is in the center $Z(G)$ if and only if $|\chi(g)| = \chi(1)$ for every irreducible character χ of G.

3. Let V be a vector space of finite dimension $d \geq 1$ over a field k of arbitrary characteristic. Let V^* denote the dual space.

(a) For any $n \geq 1$, prove that there is a unique bilinear pairing $V^\otimes n \times (V^*)^\otimes n \to k$ satisfying

$$ (v_1 \otimes \cdots \otimes v_n, \ell_1 \otimes \cdots \otimes \ell_n) \mapsto \prod \ell_i(v_i), $$

and by using bases show that it is a perfect pairing (i.e., identifies $(V^*)^\otimes n$ with $(V^\otimes n)^*$).

(b) For any $1 \leq n \leq d$, do similarly with $\wedge^n(V)$ and $\wedge^n(V^*)$ using the requirement

$$ (v_1 \wedge \cdots \wedge v_n, \ell_1 \wedge \cdots \wedge \ell_n) \mapsto \det(\ell_i(v_j)). $$

4. Let K/k be a finite extension of fields with $\alpha \in K$ as a primitive element over k. Let $f \in k[x]$ be the minimal polynomial of α over k.

\textit{Date:} Thursday, September 17, 2009.
(a) Explain why $K \cong k[x]/(f)$ as k-algebras, and use this to relate the local factor rings of $K \otimes_k F$ to the irreducible factors of f in $F[x]$, with F/k a field extension.

(b) Assume K/k is Galois with Galois group G. Prove that the natural map $K \otimes_k K \to \prod_{g \in G} K$ defined by $a \otimes b \mapsto (g(a)b)$ is an isomorphism.

5. Let G be a finite abelian group, $\omega : G \times G \to \mathbb{R}/\mathbb{Z}$ a bilinear mapping so that

(i) $\omega(g, g) = 0$ for all g in G;
(ii) $\omega(x, g) = 0$ for all g if and only if x is the identity element.

Prove that the order of G is a square. Give an example of G of square order for which no such ω exists.

Hint: Consider a subgroup A of G which is maximal for the property that $\omega(x, y) = 0$ for x, y in A. You may use the following fact without proof: any finite abelian group X admits $|X|$ distinct homomorphisms to \mathbb{R}/\mathbb{Z}.