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Abstract. Sticky or clumpy riffle shuffles appear quite naturally
in applications; however, the problem of precisely describing the
convergence rate of such modified riffle shuffles has remained open
for a long time. In this paper, we develop an alternative family
of clumpy shuffles, and analyze their convergence rate. We then
provide empirical evidence that our alternative shuffles converge
at a similar rate as the clumpy riffle shuffle in cases that apply to
real shuffling problems.

1. Introduction

The riffle shuffle – which consists of cutting a deck of cards roughly
in half and then riffling the two halves together – is one of the most
commonly used card shuffling techniques. A natural model for this
shuffle, developed independently by Gilbert and Shannon [10] and by
Reeds [14], has led to general results and a fairly good understanding
of the riffle shuffle. A Gilbert-Shannon-Reeds (GSR) shuffle consists of
the following: Cut the deck roughly in half, where the location of the
cut is binomially distributed, and then drop cards one by one from the
two half decks A and B such that the probability that the next card
comes from deck A is |A|/(|A| + |B|). Bayer and Diaconis [3] give a
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sharp mathematical analysis of a GSR riffle shuffle; a survey of various
results relating to riffle shuffling is given in [7].

The GSR model has an algebraic structure that leads itself well to
careful analysis, and allows us to answer fairly intricate questions about
riffle shuffles. For example, Conger and Howald [4] describe the impact
of dealing techinques after riffle shuffling, and Assaf & al. [2] describe
the performance of a riffle shuffle when only certain features (such
as suits) matter. Meanwhile, Conger and Viswanath [5], [6] develop a
Monte-Carlo method for numerically answering less tractable questions
about riffle shuffles (such as what kinds of bridge hands are induced by
riffle shuffles). The model also lends itself to developments that are not
directly related to playing cards: for example, Diaconis & al. [8] give a
description of the cycle structure induced by riffle shuffles. Trefethen
and Trefethen use information theoretic methods to get quantitative
results about cutoff phenomena in riffle shuffles [15].

We thus have a fairly good idea of how riffle shuffles behave, so long
as they obey the GSR model. However, there are much fewer results
about the behavior of riffle shuffling outside of the GSR model. Fulman
[9] develops a model for a biased riffle shuffle, which differs from a GSR
shuffle in that the distribution of the cut to the deck is skewed; and
Uyemura-Reyes [16] analyzes “perfect” riffle shuffles, where the only
degree of freedom is which half of the deck we start dropping cards from
first. The mixing time of the Thorp shuffle, which is another model
for a dealer shuffle, was bounded by Morris [11]. To our knowledge,
though, there are not many results available that would allow us to
do error analysis on riffle shuffles, and explain how the approach to
randomness of a riffle shuffle is impacted by a tweak to the shuffling
technique.

One question in particular that could be interesting to people shuf-
fling cards – but has yet to be answered precisely – is the following:
if a riffle shuffle is clumpy (i.e. more pairs of consecutive cards are
preserved than should be according to the GSR model), how will ap-
proach to randomness be affected? A related question is the behavior
of dealer shuffles, which preserves fewer pairs of consecutive cards than
a GSR shuffle. Both of these questions are relevant to “real life” card
shuffling situations. Casino dealers tend to have shuffles that are sig-
nificantly cleaner than the GSR shuffle, which motivates the study of
dealer shuffle; in section 1.1, we show evidence that sub-routines of a
wash-shuffle can be modeled as clumpy GSR shuffles.

In this paper, we attempt to shed some light on the convergence rate
of clumpy riffle shuffles. This one-parameter family of deformations of
the GSR shuffle was, to our knowledge, first suggested by Aldous in
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1983 [1]. More recently, this model has been mentioned in [6] and [7]. A
sharp analysis of the convergence rate of such modified GSR shuffles,
however, remains a largely open problem. For the purpose of this
paper, we use the following definition of a clumpy riffle shuffle, which
is equivalent to the Markovian Model suggested in [7] with pii ≥ 1/2.

Definition 1.1. A q-clumpy riffle shuffle of a deck of cards, with 0 ≤
q < 1, consists of the following:

• With probability 2q−1, glue consecutive cards together. (Each
pair of consecutive cards is considered independently.)
• Perform a GSR riffle shuffle on the resulting deck, where each

chunk of glued cards is treated as a single card.
• Un-glue all cards.

We do not attempt to analyze this shuffle directly, but rather give
a sharp analysis of a related shuffle: the q-clumpy a-shuffle. We then
present empirical evidence that these two shuffles approach randomness
at similar rates (at least in the case n = 52). If one of our motivations
for studying clumpy riffle shuffles is to use such shuffles as a model for
real-world processes, it does not seem too unreasonable to use another
model which is easier to understand as a tool to approximate clumpy
riffle shuffles.

1.1. Modeling a Wash Shuffle. The motivation for our study of
clumpy riffle shuffles came from an attempt to model the wash shuf-
fle. One promising model of the wash shuffle consists of dividing the
deck into multiple small piles, and then randomly shuffling or smush-
ing adjacent piles together and cutting existing piles apart. This model
corresponds fairly well qualitatively at least to the way I wash-shuffle
cards. When I shuffle a deck of 52 cards, the cards are typically spread
out between around 10 piles, with a limited number of overlaps between
the piles.

The question then becomes: how can we model the way in which
these small piles are smushed together during a wash shuffle? One
strategy would be to combine these piles just using a regular GSR
riffle shuffle. However, our experiments suggest that the smushing sub-
routine of a wash shuffle is significantly clumpier than a GSR shuffle.

To gain a better understanding of how cards are smushed together
during a wash-shuffle, we ran the following experiment: we smushed
two decks of 13 cards together, and then counted the number of clumps
of size k preserved by the shuffle. In order to smush the two decks of
cards together, we first spread each deck out, and then combined the
decks by pushing the cards inward. See figure 2 for an illustration. We
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Figure 1. Distribution of clump sizes with a wash shuffle

Figure 2. Smushing two piles of cards together (before
and after)

ran this experiment 20 times. Our results are summarized in figure
1. For each possible clump size k = 1, ..., 13 we recorded the average
number of times clumps of this size were produced by a wash shuffle.

For comparison, we present the expected number of clumps of size
k generated by a clumpy riffle shuffle, where consecutive cards are
glued together with probability 0.4 (this corresponds to a clumpiness
parameter q = 0.5). These values were obtained by simulation. This
data seems to present some evidence that the smushing in a wash-
shuffle behaves like a clumpy riffle shuffle. As we shall see, a clumpy
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riffle shuffle with parameter q = 0.5 is approximately 4/3 times slower
than a regular riffle shuffle, which means we cannot just ignore this
clumpiness.

2. The Clumpy a-Shuffle

The Gilbert-Shannon-Reeds (GSR) model for card shuffling has an
algebraic structure that lends itself to very natural mathematical ab-
stractions; in fact, it leads to an independent development of Solomon’s
descent algebra [12]. One of the key properties of the GSR riffle shuffle
is that we can generalize it to an a-shuffle, where we obtain an a-shuffle
by cutting a deck of cards into a packets according to a multinomial
distribution, and then riffling these a packets together. Bayer and Di-
aconis prove in [3] that an a-shuffle followed by a b-shuffle is equivalent
to an ab-shuffle. This result enables them to treat the composition of
k riffle shuffles as a single 2k-shuffle, which opens the door to a whole
new suite of combinatorial tools. Unfortunately, clumpy riffle shuffles
do not naturally lend themselves to a similar generalization.

The main difficulty with clumpy riffle shuffles is that the distributions
generated by clumpy inverse shuffles do not fall into Stanley’s theory
of QS-distributions, which is the most general form of the distributions
commonly used to analyze riffle shuffles [13]. Inverse shuffling a deck k
times is equivalent to labeling each a card with a random binary string
of length k, and then sorting the cards by label (ties are kept in the
initial order). With a regular GSR riffle shuffle, these labels are drawn
from a uniform distribution; with Fulman’s biased shuffles, these labels
are no longer uniform, but all permutations of a given set of labels
are equiprobable. This exchangeability condition is necessary for the
inverse shuffle to generate a QS-distribution.

Clumpy shuffles, meanwhile, do not satisfy this exchangeability con-
dition: Consider shuffling a 3-card deck twice with a clumpy inverse
riffle shuffle, and let p be the probability that two consecutive cards
get the same random bit in a single shuffle. Then, the probability of
obtaining the labeling [11, 10, 01] is p2(1 − p)2/4, but the probability
of obtaining [11, 01, 10] is p(1− p)3/4; thus we do not have the kind of
exchangeability property we might have wanted.

This lack of exchangeability also makes it difficult to find stopping
times at which the deck is completely random. Under an inverse shuffle
with a QS-distribution, once all cards have different labels, we know
that the deck has been randomized, since any permutation of the labels
is equally likely. With clumpy shuffles this, again, is not true. Suppose
we have inverse shuffled the deck abc twice. If we know only that
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all cards now have distinct labels, we have the following probability
distribution on the current state of the deck.

P (abc) =
1− 2p+ 2p2

2(1 + p)

P (bca, cab) =
1− 2p+ 4p2

4(1 + p)

P (acb, bac, cba) =
p− p2

1 + p

Noting these difficulties, in this paper we develop an alternative fam-
ily of shuffles: the q-clumpy a-shuffles; these shuffles are analoguous
to the a-shuffles in [3]. They still do not generate an inverse shuffle
with exchangeable labels, but they are simple enough that we can get
around this. Clumpy a-shuffles in themselves are not of much inter-
est, since, unlike non-clumpy a-shuffles, the distributions generated by
such clumpy a-shuffles do not form a semigroup. However, in section
3, we present empirical evidence that clumpy 2m-shuffles have similar
distributions to the composition of m clumpy riffle shuffles (at least in
the case n = 52), which suggests that understanding the former can
help us understand the latter.

Definition 2.1. A q-clumpy a-shuffle of a deck of cards, with 0 ≤ q <
1 ∈ R, a ≥ 2 ∈ N, consists of the following:

• With probability aq−1
a−1 , glue consecutive cards together. (Each

pair of consecutive cards is considered independently.)
• Perform an a-shuffle on the resulting deck, where each chunk of

glued cards is treated as a single card.
• Un-glue all cards.

Above, we characterized inverse shuffles in terms of labelings. A
more shuffling-oriented way of describing a regular inverse a-shuffle is
as follows: Take cards sequentially from the top of the deck, and place
them face up on one of a packets (where the packet the card is placed
on is selected uniformly at random); then stack the a packets. Our
definition of a clumpy a-shuffle also admits a similar inverse description.

Proposition 2.2. The inverse of a q-clumpy a-shuffle admits the fol-
lowing description: Take a deck of cards, and distribute the cards one
by one (face up) into a separate packets, such that a card goes into the
same pile as the card before it with probability aq−1. If a card does not
follow the card above, the card is equally likely to end up in any of the
other piles.
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Proof. The inverse shuffle we just described is equivalent to first gluing
consecutive cards together with probability aq−1

a−1 , and then performing
a regular inverse a-shuffle. To see this, we notice that if consecutive
cards are glued together with probability aq−1

a−1 , then the probability of
one card following the card above it is:

aq − 1

a− 1
+

1

a
· (1− aq − 1

a− 1
) =

1 + (a− 1) · aq−1
a−1

a
= aq−1

We get the desired result by noting the equivalence of the sequential
and inverse descriptions of a regular a-shuffle.

�

This inverse description gives some motivation for our q-clumpy a-
shuffle. Indeed, although the composition of a q-clumpy a-shuffle and
b-shuffle does not give an ab-shuffle, the probability that two originally
consecutive cards remain stuck together through both an a-shuffle and
then a b-shuffle is the same as the probability that they remain stuck
together in an ab-shuffle. We might hope that the relationship between
two formerly consecutive cards becomes essentially random as soon as
they get separated; in this case, the composition of multiple a-shuffles
might have a similar approach to randomness as a single ak-shuffle.

2.1. Convergence of the clumpy a-shuffle. In this section, our goal
is to give an estimate of the rate of convergence in total variation
distance of the probability measures P a

q generated by a q-clumpy a-
shuffles to the uniform distribution U on Sn. We first obtain bounds
on ||P a

q − P a
0 ||TV , and then use Bayer and Diaconis’ result from [3],

given below as theorem 2.3, to get estimates for ||P a
0 −U ||TV . Since the

transition probabilities of non-clumpy a-shuffles form a semi-group, the
GSR distribution Qm used below is equal to the a-shuffle distribution
P 2m

0 .

Theorem 2.3. (Bayer, Diaconis) Let Qm be the Gilbert-Shannon-
Reeds distribution on the symmetric group Sn. Let U be the uniform
distribution. For m = log2[n

3
2 c], with 0 < c < ∞ fixed, as n tends to

∞,

||Qm − U ||TV = 1− 2Φ

(
−1

4c
√

3

)
+Oc

(
1

n1/4

)
with Φ =

∫ x
−∞ e

−t2/2 dt/
√

2π.

In order to proceed with our analysis of q-clumpy a-shuffles, we first
need to obtain an expression for their transition probabilities. When
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q = 0, these transition probabilities only depend on the number of
descents in the shuffled deck. Once we make the shuffle clumpy, we
also have to take into account the number of pairs of consecutive cards
preserved by the shuffle.

Theorem 2.4. Consider a permutation π of [n], such that π−1 has d
descents (i.e. π has d+ 1 rising sequences), and π preserves f pairs of
consecutive cards. Then the probability of obtaining π with a q-clumpy
a-shuffle is given by:

P a
q (π) =

1

a

f∑
g=0

ag(q−1)
(

1− aq−1

a− 1

)n−g−1(
f

g

)(
n+ a− 1− d− f

n− g

)
Proof. We start by recalling the proof given in [3] for the result:

P a
0 (π) =

1

an

(
n+ a− 1− d

n

)
The proof relies on the following idea. An inverse riffle shuffle is

equivalent to assigning each card a random label between 1 and a,
and then sorting the cards first by label, and then, in case of tie, by
their original order. Notice that if π(k) > π(k + 1), i.e. π−1 has a
descent at k, then the cards k and k+ 1 must have distinct labels. The
result then follows by a classical bars and stars argument: We need
to divide n cards (in the order given by π−1) into a packets, with the
additional constraint that cards ki and ki+1 not be in the same packet
for 1 ≤ i ≤ d. We thus have a−1−d remaining separators that we can
freely place between the cards, which we can do in

(
n+a−1−d
a−1−d

)
ways. To

complete the argument, we note that there are an equiprobable ways
of performing an a-shuffle.

In the case of a q-clumpy a-shuffle, we no longer can assume that
all ways of performing an a-shuffle are equiprobable. In fact, if a given
shuffle has g pairs of consecutive cards that followed each other into
the same packet during the shuffle, then, by the inverse description
of the q-clumpy a-shuffle in proposition 2.2, such a shuffle must have
probability

pg =
1

a
· ag(q−1) ·

(
1− aq−1

a− 1

)n−g−1
Here, the a−1 factor up front indicates that the first card is equally

likely to end up in any pile. We now choose g pairs of consecutive
cards that are preserved by π, and add the constraint that these g card
pairs must be kept together by the shuffle, while the other f − g pairs
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that were preserved by π must be separated by the shuffle (i.e. there
must be a packet separation placed between them). We can emulate
the bars and stars argument from above to find the number of shuffles
that satisfy this constraint: Having g pairs of cards that must follow
each other throughout the shuffle is equivalent to gluing these cards
together, and mapping n 7→ n− g in the above argument. Meanwhile,
the f −g pairs of cards that must be separated fix the location of f −g
additional separators (in exactly the same way as descents); this can be
described by sending d 7→ d+f−g in the same arguement. Thus, given
that we chose exactly which g pairs of cards should follow each other
through the shuffle, we find that we can perform an a-shuffle satisfying
all our constraints in Na

g (π) ways:

Na
g (π) =

(
n+ a− 1− d− f

n− g

)
We notice in addition that all the Ng(π) shuffles described above

have probability pg. Finally, summing over all choices of g pairs we
could glue together, we find that:

P a
q (π) =

f∑
g=0

pg

(
f

g

)
Na
g (π)

�

We can conveniently formulate the above result as follows:

Corollary 2.5. For a permutation π of [n] such that π−1 has d descents
and π preserves f pairs of consecutive cards:

P a
q (π)

P a
0 (π)

=

f∑
g=0

aqg
(

1− aq−1

1− a−1

)n−g−1(
f

g

)(n+a−1−d−f
n−g

)(
n+a−1−d

n

)
Under the uniform distribution, the vast majority of permutations

have only very few consecutive elements. To see this, consider the
natural bijection σ : Sn → Aut([n]) given by σ(π)(k) = π(k + 1) − 1
(mod n). Notice that this bijection associates pairs of consecutive cards
in π to fixed points of σ(π). The distribution of the number of pairs
of consecutive cards in random permutations is thus the same as that
of the number of fixed points in a random automorphism over a finite
set, which is Poisson(1) for n large.

Using this remark, we can give fairly tight bounds for the convergence
rate of ||P a

q − P a
0 ||TV .
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Lemma 2.6. Let q ∈ [0, 1] be fixed, and let P a
∗ be clumpy a-shuffle

measures on Sn such that a(n) = (n/φ(n))
1

1−q where φ is a bounded
function of n. Then, for n large,

||P a
q − P a

0 ||TV =

(
1

e
± ||P a

0 − U ||TV
)
·
(

1− e−φ(n) +
eφ(n) − φ(n)− 1

eφ(n)

)
+O

(
1

n
,

(
φ(n)

nq

) 1
1−q

)

with ±ζ indicating an error term bounded by ζ.

Proof. We begin by approximating our expression in corollary 2.5. To
use this equation, however, we must choose permutations π(n) in Sn
with a number of descents d(n) and of consecutive pairs f(n). For
this purpose, we select a sequence d(n) ≤ n (as we shall see the d(n)
disappear into the error terms), and hold f(n) to a fixed value (recall
that the distribution of f does not depend on n for n large). We start
by observing that

log

[(
n+a−d−1−f

n−g

)(
n+a−d−1

n

) ] = log

[
ng

(a− d− 1 + g)g

]
+ log

[
(a− d− 1 + g)f
(n+ a− d− 1)f

]
=g log

[n
a

]
+Of

(
1

n
,
n

a

)

We also notice that as a gets large

log

[
1− aq−1

1− a−1

]
=

1− aq

a
+O(a2(q−1))

Now, since all the terms in our sum for P a
q /P

a
0 (π) are strictly positive,

and there are only f terms in this sum for each n, we can bound all
these log-space errors ζg using a single error term ζf = Of (1/n, n/a).
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log

[
P a
q

P a
0

(π)

]
= log

[
f∑
g=0

(
f

g

)(
naq

a

)g (
1− aq−1

1− a−1

)n−g−1
eζg

]

= log

[(
1− aq−1

1− a−1

)n−f−1(
naq−1 +

1− aq−1

1− a−1

)f]
+ ζf

=f log

[
1 + naq−1

1− a−1

1− aq−1

]
+ (n− 1)

[
1− aq

a
+O(a2(q−1))

]
+ ζf

=f log
[
1 + naq−1(1 +O(aq−1))

]
− naq−1

+Of

(
1

n
,
n

a
, na2(q−1), aq−1

)
=f log[1 + naq−1]− naq−1 +Of

(
1

n
,
n

a

)

On the last line, we used the assumption that naq−1 is bounded to

simplify the error term. Now for large enough n, the ratio
Pa
q

Pa
0

(π) is

greater than 1 for f ≥ 2. Thus, in order to study the asymptotic be-
havior of ||P ak

q − P ak
0 ||TV , we only need to consider the subset of Sn

with f = 0, 1. Using a slight abuse of notation (P a
0 and P a

q clearly have
densities with respect to U , and share the same null sets so have den-
sities with respect to each other), and error terms ζf = Of (n

−1, n/a),
we see that for a large enough,
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||P a
q − P a

0 ||TV =

∫
π∈Sn:(Pa

0 −Pa
q )(π)>0

(P a
0 − P a

q )(π) dU

=

∫
π∈Sn:f=0,1

1−
P a
q

P a
0

(π) dP q
0

=

∫
π∈Sn:f=0

1− e−naq−1+ζ0 dP q
0

+

∫
π∈Sn:f=1

1− (1 + naq−1)e−na
q−1+ζ1 dP q

0

=P a
0 ({f = 0}) · (1− e−naq−1

)

+ P a
0 ({f = 1}) · (enaq−1 − naq−1 − 1)e−na

q−1

+ ζ

=(PU({f = 0} ± ||P a
0 − U ||TV ) · (1− e−naq−1

)

+ (PU({f = 1} ± ||P a
0 − U ||TV ) · e

naq−1 − naq−1 − 1

enaq−1 + ζ

=

(
1

e
± ||P a

0 − U ||TV
)
·

(
1− e−naq−1

+
ena

q−1 − naq−1 − 1

enaq−1

)

+O

(
1

n
,
n

a

)
On the last line, we use the fact that f is distributed according to

Poisson(1) under U for large n, and PU({f = 0}) = PU({f = 1}) =
1/e+O(1/n!). Finally, writing a in terms of φ(n) gives us the desired
result.

�

It is not surprising that the clumpy a-shuffle converges to the regular
GSR shuffle as naq−1 becomes small. As we saw in proposition 2.2, the
probability that any two cards are stuck together before being riffled in
an q-clumpy a-shuffle is aq−1; thus, when naq−1 is small, the expected
number of pairs of consecutive cards preserved by the clumpy shuffle is
approximately En,a + (n − 1)aq−1, where En,a is the expected number
of clumps under a non-sticky a-shuffle.

Combining the above result with the bound for ||P a
0 − U ||TV given

in theorem 2.3, we can get our desired bound for ||P ak
q − U ||TV . If

q < 1
3
, the clumpiness of the shuffle disappears before P a

0 approaches

randomness; on the other hand, if q > 1
3
, clumpiness becomes the

dominating source of non-randomness.
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Theorem 2.7. Let P a
q be the q-clumpy a-shuffle distribution on Sn for

some fixed q ∈ [0, 1]; let U be the uniform distribution.

If q < 1
3
, let a = cn

3
2 , where 0 < c <∞. Then, as n goes to ∞,

||P a
q − U ||TV = 1− 2Φ

(
−1

4c
√

3

)
+Oc

(
n−min[ 1

4
, 1−3q

2
]
)

with Φ =
∫ x
−∞ e

−t2/2 dt/
√

2π.

Conversely, if q > 1
3
, let a = (n/c)

1
1−q , with 0 < c <∞. Then, as n

gets large,

||P a
q − U ||TV =

1

e

(
1− e−c +

ec − c− 1

ec

)
+Oc

(
n−min[ 1

4
, 3q−1
2(1−q)

]
)

Proof. We start with the case q < 1
3
. By the triangle inequality, we

know that

||P a
q − U ||TV = ||P a

0 − U ||TV ± ||P a
q − P a

0 ||TV
with ±ζ indicating an error term bounded by ζ. If we set

φ(n) =
n

a1−q
=

cq−1

n1−3q
2

We find, as in lemma 2.6, that

||P a
q − P a

0 ||TV =

(
1

e
± ||P a

0 − U ||TV
)
·
(

1− e−φ(n) +
eφ(n) − φ(n)− 1

eφ(n)

)
+O

(
1

n
,

(
φ(n)

nq

) 1
1−q

)

=Oc

(
n−

1−3q
2

)
+Oc

(
1√
n

)
Thus, using theorem 2.3, we get that

||P a
q − U ||TV = 1− 2Φ

(
−1

4c
√

3

)
+Oc

(
n−min[ 1

4
, 1−3q

2
]
)

Conversely, in the case q > 1/3, we know from theorem 2.3 that,

with m = γn
3
2 ,

||Pm
0 − U ||TV = 1− 2Φ

(
−1

4γ
√

3

)
+Oγ

(
1
4
√
n

)
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From [3] it is clear that the error term is bounded in γ as γ gets
large. Moreover, for large γ, we have the asymptotic behavior

1− 2Φ

(
−1

4γ
√

3

)
∼ 1

2γ
√

6π

Thus, with a = κn
1

1−q and q > 1/3, we find that

||P a
0 − U ||TV = Oκ

(
n−min[ 3q−1

2(1−q)
, 1
4
]
)

Finally, all the other errors in our expression for ||P a
q − P a

0 ||TV in

lemma 2.6 decay faster than 1/
√
n since q > 1/3, so an application of

the triangle inequality gives us our conclusion.
�

Clumpiness thus disappears faster than the rising-sequence signature
with q < 1/3, but becomes the asymptotically dominant source of non-
randomness in a q-clumpy a-shuffle once q > 1/3. However, when q is
near 1/3, both sources of non-randomness decay at fairly similar rates,
which makes the error terms decay quite slowly.

3. Clumpy Riffle Shuffles

In the previous section, we developed a fairly precise description of
the clumpy a-shuffle. Of course, this process is not really a shuffle in the
regular sense. The non-clumpy a-shuffle distribution P 2m

0 is equal to the
GSR distribution Qm

0 ; however, there is no such exact correspondance
between the clumpy a-shuffle and clumpy riffle shuffle distributions
P 2m

q and Qm
q . It appears, however, that P 2m

q and Qm
q converge to the

uniform distribution at similar rates; if this were true, then we could
use our above results on the asymptotic behavior of ||P 2m

q − U ||TV to
approximate the behavior of ||Qm

q − U ||TV for large m.

In this section, we present some empirical evidence that P 2m

q and Qm
q

converge at similar rates, at least in the case where n = 52 and q is not
too close to 1. As a proxy for the quantity ||Qm

q − U ||TV , we used the
probability that a shuffle preserves no pairs of consecutive cards under
Qm
q . Indeed, as we saw in the previous section, it is this probability

under P 2m

q that explains most of the separation between P 2m

q and U
for q large enough.

In figure 3, we see how the probability of obtaining no consecutive
cards, which should be 1/e under the uniform distribution, approaches
this uniform probability as we increase the number of shuffles m. We
notice that although Qm

q and P 2m

q don’t exactly match, they converge
at very similar rates (especially in comparison to Qm

0 ).
14
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Figure 3. Probability of obtaining no consecutive
cards; with n = 52 and q = 0.5

Figure 4. Probability of obtaining no consecutive
cards; with n = 52

In figure 4 we vary the clumpiness parameter q instead of the number
of shuffles, and see how the clumpy shuffles get further from the uniform
distribution as q increases.

Although these results are far from providing any proof that P 2m

q

and Qm
q have similar rates of convergence in general, they do provide

some evidence that, at least in the cases that we might care about most
15



Stefan Wager June 2011

(e.g. the smush shuffle example with n = 52, q = 0.5), P 2m

q can be a
useful device in understanding the approach to randomness of Qm

q .

3.1. How Clumpy is Too Clumpy? Armed with our results from
the previous sections, we might consider the following conjecture as a
corollary to theorem 2.7:

Conjecture 3.1. When shuffling a deck of n cards using a clumpy riffle
shuffle of parameter q, m shuffles are both necessary and sufficient to
randomize the deck of cards, where

m = max

[
3

2
,

1

1− q

]
log2(n) +Oq,ε(1)

Here, the deck is considered to be random once ||Qm
q − U ||TV < ε.

The lower bound in conjecture 3.1 is fairly easy to prove directly
using techniques similar to those used in theorem 2.4.

Lemma 3.2. When shuffling a deck of n cards using a clumpy riffle
shuffle of parameter q, at least

m =
1

1− q
log2(n) +Oq,ε(1)

shuffles are necessary to get ||Qm
q − U ||TV < ε.

Proof. Any permutation π ∈ N0 that preserves no pairs of consecutive
cards can only be generated by a separating shuffle σ ∈ S0, where
a separating shuffle is a shuffle that separates each pair of initially
consecutive cards at some point during the shuffle (but the pair can
later be reunited).

The probability of never separating a given pair of adjacent cards
over the course of k q-clumpy riffle shuffles is 2k(q−1). Moreover, from
definition 1.1, it is clear that all n− 1 initial pairs of consecutive cards
are either separated at some point or preserved through all k riffles
independently. Thus, the probability of obtaining a separating shuffle
is (1− 2k(q−1))n−1. It follows that

P (π ∈ N0) ≤ P (σ ∈ S0) = (1− 2k(q−1))n−1 ≤ e−(n−1)2
k(q−1)

Now, since the number of consecutive cards preserved by π is very
nearly Poisson distributed for large n, we know that P (π ∈ N0) =
e−1 +O(1/n!), and so, for (n− 1)2k(q−1) > 1

||Qk
q − U ||TV ≥ e−1 − e−(n−1)2k(q−1)

16
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Thus, in order to have ||Qm
q − U ||TV < ε, we need

(n− 1)2k(q−1) < 1− log(1− e · ε)

which leads directly to our conclusion.
�

This lemma, combined with 2.3, gives us the desired lower bound in
conjecture 3.1.

This result could be useful, for example, when we’re playing cards
and need to decide whether to make our friends who have very clumpy
shuffling technique shuffle the deck more times than everyone else. Our
first task, though, is to translate the clumpiness parameter q into some-
thing that can be easily measured.

Definition 3.3. The packetification ψ of a shuffle is the expected num-
ber of packets of consecutive cards formed by the shuffle, divided by
the total number of cards shuffled.

The relationship between q and ψ in a clumpy riffle shuffle is quite
neat.

Lemma 3.4. The packetification ψ of a q-clumpy riffle shuffle is given
by

ψ(n) = 1− 2q−1 + ζn

where ζn ≤ 1
n

Proof. The probability of obtaining a given set of j clumps with a q-
clumpy riffle shuffle of n cards is clearly 2(n−j)·(q−1)(1−2q−1)j−1. More-
over, we can choose these j clumps in

(
n−1
j−1

)
ways (by placing j − 1

separators between clumps), so the expected number of clumps given
by a q-clumpy riffle shuffle is given by:

17
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ψ(n) · n =
n∑
j=1

j

(
n− 1

j − 1

)
2(n−j)·(q−1)(1− 2q−1)j−1

= 1 +
n∑
j=1

(j − 1)

(
n− 1

j − 1

)
2(n−j)·(q−1)(1− 2q−1)j−1

= 1 + (n− 1)
n−2∑
k=0

(
n− 2

k

)
2(n−2−k)·(q−1)(1− 2q−1)k+1

= 1 + (n− 1)(1− 2q−1)[(2q−1) + (1− 2q−1)]n−2

= n · (1− 2q−1) + 2q−1

For n large enough, we get that ψ is very nearly 1− 2q−1.
�

We thus find that

q = log2(1− ψ(n)) + 1− log2(1− 1/n) ≈ log2(1− ψ) + 1

This lets us re-write our conjecture in terms of ψ. For large enough
n,

m = min

[
3

2
,− 1

log2(1− ψ)

]
log2(n) + θψ

shuffles are both necessary and sufficient to achieve randomness.
This result implies that clumpiness becomes the asymptotically domi-
nant source of non-randomness in riffle shuffle once ψ > 1−2−

2
3 ≈ 0.37.

An easy way to see if someone’s shuffle is this clumpy is to have them
shuffle a deck a 52 cards a few times and check whether, on average,
their shuffle divides the deck into less than 20 packets.

We recall, though, that as q is near 1/3, the error terms decay quite
slowly in n. This means that, even in the case n = 52, clumpiness can
have quite a significant impact on approach to randomness even when q
is somewhat less than 1/3. In the case of a non-clumpy riffle shuffle, we
know that 7 or 8 shuffles suffice to reach randomness. Meanwhile, from
figure 4, we might argue that the deck is still unacceptably non-random
after 8 shuffles once q is greater than, say, 0.2. Thus, if we expect a
deck of 52 cards to be random after 8 shuffles, we should be wary of
shufflers with a packetification factor ψ ≤ 0.43, or who regularly obtain
less than 23 packets when shuffling a standard deck of cards.
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4. Conclusions

In this paper, we developed a class of q-clumpy a-shuffles, and proved
results concerning the convergence of q-clumpy a-shuffle measures to
the uniform measure. We also used empirical evidence to suggest that
the convergence rate of clumpy a-shuffles can be used to approximate
the convergence rate of a sequence of clumpy riffle shuffles, at least in
some applications.

We gave a tight lower bound for the convergence rate of ||Qm
q −

U ||TV in lemma 3.2. It would be interesting to see whether there are
conditions on q under which the corresponding upper bound given in
conjecture 3.1 also holds. Another topic for further study would be to
see whether similar techniques can be used to study the approach to
randomness of dealer shuffles, which can be described as clumpy riffle
shuffles with negative q.
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