
A Markov Chain Case Study:
Card Shuffling

Yongwhan Lim

December 20, 2012

Abstract

In this thesis, I highlight important results in the mixing time of card shufflings.
Then, I pose a number of interesting problems and provide simulation and proof to
address the problems. I conclude by suggesting future work.

Contents

1 Overview 2

2 Related Literature 2
2.1 Mixing Time . 3

2.1.1 Riffle Shuffle :
3
2

log n + θ . 3

2.1.2 Overhand Shuffle : Θ(n2 log n) 3
2.2 Comparison Technique . 4

3 Optimal Shuffling Technique 5
3.1 Introduction . 5
3.2 Explicit Computation . 5
3.3 Shuffling Method Types . 6
3.4 Result . 6
3.5 Analysis . 8

4 Explicit Shuffling Simulation 9
4.1 Introduction . 9
4.2 Setup . 9
4.3 Result . 9

5 Variation on Overhand Shuffle 10
5.1 Introduction . 10
5.2 Special Case: k = n− 2 . 10

5.2.1 Notation . 11

1

5.2.2 Proof of k = n− 2 case . 11
5.3 Comparison with classical results . 11
5.4 Comparison to k-cycle . 12

6 Future Work 12

7 Appendix 12
7.1 Downloads . 12
7.2 Code . 13

7.2.1 Section 3 . 13
7.2.2 Section 4 . 21
7.2.3 Section 5 . 23

1 Overview

There are number of interesting mathematical problems about shuffling cards. Of
those, in [1], the authors settled the mixing time for the riffle shuffle, concluding that
under the Gilbert-Shannon-Reeds (GSR) model, it is sufficient to use riffle shuffle only
about 7 times to sufficiently randomly shuffle a deck of 52 cards.

I am hoping to expand the statistical literature and analyze their applications to
this topic by proposing more interesting questions and providing results on them. I
will do this partially by running a computer simulation and more fully by proving a
closely related statement. In the case of the former, I provide conjectures that seem to
hold based on the simulation. In particular, here is the highlight of the problems that
I am considering in this thesis.

1. Find an optimal shuffling sequence given a finite set of shuffling methods.

2. Compare a customized shuffling method to other benchmark methods by simula-
tion using off-the-shelf test statistics.

3. Use a comparison technique [2, 3] and recent result on k-cycle shuffles [8] to
determine an upperbound on the mixing time of a special class of card shuffling.

This thesis is organized as follows. First, I will provide a brief overview of the related
literature on the mixing time study of card shuffling. Then, I will visit the highlighted
topics one by one. I will conclude by the future work. The interested readers could
download the source code by following the link provided in the last section.

2 Related Literature

There are few lines of work related to card shuffling that are directly related to the
problems we are considering in this thesis. One is the analysis of mixing time of
Markov chain arising from special classes of card shuffling. The other is the comparison
technique, which is the technique we used to prove the upperbound in Section 5.
The problems we consider here are inspired from careful reading of the card shuffling

2

literature. There are number of standard textbooks that one should peruse to get
familiar with the topic first such as [4, 6, 7].

2.1 Mixing Time

There several lines of work here. We will focus on following key results: the mixing
time bound on a riffle shuffle and an overhand shuffle [1, 10, 11]. A reader should also
find [5] interesting, for a number of other results can be proven using the finite Fourier
methods.

2.1.1 Riffle Shuffle :
3

2
log n + θ

First, as I briefly mentioned in the introduction, the most celebrated result is perhaps
the one on the riffle shuffle [1] where the author settles that the mixing time is Θ(log n)
for riffle shuffle. To be more precise, a riffle shuffling under the Gilbert, Shannon, and
Reeds model is the following: a deck of n cards is cut into two portions according to a
binomial distribution. The two packets are then riffled together such that cards drop
from the left and right packets with probability proportional to the number of cards
in the packet.

Let Sn be the symmetric group, U the uniform probability, and Qm the Gilbert-
Shannon-Reeds probability after m shuffles. Then, the total variance distance that we
would like to approximate is:

||Qm − U || = max
A∈Sn

|Qn(A)− U(A)|.

The main theorem in [1] is the following theorem:

Theorem 1. If n cards are shuffled m times with m = 3/2 log2 n+ θ, then for large n,

||Qm − U || = 1− 2Φ
(
−2−θ

4
√

3

)
+ O

(
1

n1/4

)
with

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt

Thus, the variation distance tends to 1 with θ small and to 0 with θ large.

2.1.2 Overhand Shuffle : Θ(n2 log n)

There are two works on the overhand shuffle. The upperbound is first proven in [10].
Subsequently, in [11], the author showed that the bound Θ(n2 log n) is tight by proving
the lowerbound using an extension of a Wilson’s lemma.

To be more precise, the model Pemantle used for the overhand shuffle is parame-
terized by a probability p ∈ (0, 1). Each of the n − 1 slots between adjacent cards is,
independently of the other slots, declared a cutpoint with probability p. A model is
obtained by reversing each of these packets without changing its position relative to

3

the other packets. We assume a circular deck convention, which means the top card
and the bottom card regarded as being adjacent to each other.

The author of [11] proves the following main theorem of the paper using an extension
of Wilson’s lemma:

Theorem 2 ([2]). A lower bound for the overhand shuffle with with circular deck
convension and with parameter p ∈ (0, 1) is given by

p2(2− p)
8π2(1− p2)

n2 log n.

2.2 Comparison Technique

There are two versions of comparison techniques [2, 3]: one on the random walk on finite
groups and the other on the reversible Markov chains. They are powerful techniques
that can often be applied to provide an upperbound on mixing time of Markov chains.

To be more precise, note that, given real-valued function φ on G, the eigenvalues
of symmetric probabilities can be characterized by quadratic forms:

Ep(φ, φ) = E(φ, φ) = 〈(I − P)φ, φ〉,
Fp(φ, φ) = F (φ, φ) = 〈(I + P)φ, φ〉.

We call Ep a Dirichilet form. We develop a bound of type Ẽ ≤ AE for Dirichlet
forms associated with symmetric probabilities p̃ and p on a finite group G. Let E be
a symmetric set of generators of the finite group G. For y ∈ G, write y = z1 · · · zk

with zi ∈ E. The smallest such k is called the length of y, denoted by |y|. Also, |y|∗
is defined to be the length of the shortest representation of y as a product of an odd
number of generators. Let N(z, y) = N∗(z, y) be the number of times z ∈ E occurs in
the chosen representation of y. Then we have:

Theorem 3. Let p̃ and p be symmetric probabilities in a finite group G. Let E be
a symmetric set of generators. Suppose that the support of p contains E. Then the
Dirichlet forms satisfy

Ẽ ≤ AE,
F̃ ≤ A∗F

where

A = max
z∈E

1
p(z)

∑
y∈G

|y|N(z, y)p̃(y),

A = max
z∈E

1
p(z)

∑
y∈G

|y|∗N∗(z, y)p̃(y),

In this thesis, we are going to use the above version of the comparison technique
on the proof of the upperbound on the k-uniform shuffle.

4

3 Optimal Shuffling Technique

3.1 Introduction

Fix a permutation group SN on N elements. Typically, the measure of the randomness
of a particular shuffle Q on SN is calculated by comparing the transition probability
to the uniform measure U using the total variation distance; that is, ||Q− U ||TV . We
have already seen the example above where we chose Q to be riffle shuffle or overhand
shuffle. By bounding the total variance distance between the shuffle method Q and the
uniform measure, we obtained n log n bound on the riffle shuffle and n2 log n bound on
the overhand shuffle.

Here, we are interested in explicitly characterizing the best shuffling methods given
a finite set of shuffling methods (e.g., riffle, overhand, cut, and etc.).

Say M = {M1, · · · ,Mn} are a finite set of n shuffling methods where Mi is the
ith shuffle method. Then, corresponding to each Mi, we have a transition matrix Qi.
Also, write Ik to denote the set of all index sequences of length k: explicitly, (i1, ..., ik)
where ij ∈ {1, · · · , n} for each j = 1, · · · , k. Now, for I ∈ Ik, write QI to mean a
convolution sequence of Q’s corresponding to I: explicitly, Q(i1,··· ,ik) = Qi1 ∗ · · · ∗Qik .
Then, here is a short list of selected questions that we are interested in resolving:

Q1. Fix ε > 0. What is the minimum k such that there exists some I ∈ Ik satisfying
||QI − U ||TV < ε? Find asymptotic formula for k with respect to ε; also, charac-
terize such I’s; in particular, find out subset of S that are not useful at all. Also,
for each shuffle method, typically, how many times do we need to use them to
meet the requirement? Generally, what is the underlying distribution for such k’s
(not only the minimum)? In practice, this answers the question of if we would
like the deck of cards to be sufficientlly random using the available shuffling tech-
niques, how many shufflings would be enough and what the required underlying
sequence of methods is. How would the answer change if for each index i, we have
additional restriction that it must be used at least pi times but at most qi times.
What if each i’s have a probability of pi of being selected where

∑n
i=1 pi = 1?

Q2. Fix k. What are I ∈ Ik that minimize ||QI − U ||TV ? In general, what is the
underlying distribution of ||QI − U ||TV ? Concretely, this translates to the best
way to shuffle the deck of cards, given that the total number of shuffles is limited.

3.2 Explicit Computation

We use computer simulation to explore the first question. We restrict ourselves to
the case where N = 5 and n = 5; we allow top-to-random, random transpositions,
overhand, riffle, and cut. We would like to find the minimum k for a given ε > 0. Now,
let’s describe each of the shuffling methods and provide the corresponding result. I
include the complete implementation in the appendix as a reference.

5

3.3 Shuffling Method Types

There are a lot of shuffling methods; of those, the following five methods are most
prominent in the mathematical literature. Say that there are cards with label 0, · · · ,
N−1 in a deck. In cut [6], there is equal chance of picking a position before 0, · · · , N−1
and after N − 1 to cut. In overhand [10] shuffle, there is equal chance of choosing
positions to cut the deck. Once these positions are determined, the new deck is formed
by stacking from the back, parsed by the chosen positions. In riffle shuffle [1], there
is equal chance of choosing the place to cut. Then, for each remaining k and N − k
cards, all the possible arrangement of these cards are counted with unit weight. In
transposition [6], each label i and j have equal chance of being chosen, each with
probability 1/N2. In top-to-random [6] shuffle, each label i has equal chance of being
chosen, with probability 1/N .

3.4 Result

When ε = 10−5, we have the following results for minimum k. Since getting an exact
number may be infeasible, as there are too many sequences to consider, we give an
upperbound obtained by running each case at most niter times where each method
is randomly chosen with an equal probability. For increasing value of niter, if we
see that the entry in the table is not changing (i.e., converged) then it gives a bit
more confidence that the entry may be tight. The table provided below is obtained
when the number of iteration is set to 500; highlighted ones are the ones that have an
upperbound for a mini mum k smaller than the one for the riffle shuffle only:

6

type minimum k

1 cut ∞
2 overhand ≤ 56
3 cut, overhand ≤ 87
4 riffle ≤ 15
5 cut, riffle ≤ 18
6 overhand, riffle ≤ 16
7 cut, overhand, riffle ≤ 19
8 trans ≤ 24
9 cut, trans ≤ 26
10 overhand, trans ≤ 23
11 cut, overhand, trans ≤ 27
12 riffle, trans ≤ 16
13 cut, riffle, trans ≤ 14
14 overhand, riffle, trans ≤ 13
15 cut, overhand, riffle, trans ≤ 13
16 t-b ≤ 26
17 cut, t-b ≤ 31
18 overhand, t-b ≤ 28
19 cut, overhand, t-b ≤ 35
20 riffle, t-b ≤ 16
21 cut, riffle, t-b ≤ 19
22 overhand, riffle, t-b ≤ 18
23 cut, overhand, riffle, t-b ≤ 22
24 trans, t-b ≤ 25
25 cut, trans, t-b ≤ 17
26 overhand, trans, t-b ≤ 17
27 cut, overhand, trans, t-b ≤ 16
28 riffle, trans, t-b ≤ 16
29 cut, riffle, trans, t-b ≤ 14
30 overhand, riffle, trans, t-b ≤ 13
31 cut, overhand, riffle, trans, t-b ≤ 14

The above table is created by obtaining a following table for the total variation dis-
tance over iterations corresponding to each case. In particular, we obtain the following
table for case #4:

7

0 0.7750000000
1 0.2892038297
2 0.1198392702
3 0.0518480347
4 0.0227610018
5 0.0100659162
6 0.0044644191
7 0.0019817814
8 0.0008802168
9 0.0003910758
10 0.0001737822
11 0.0000772301
12 0.0000343231
13 0.0000152544
14 0.0000067797

Hence, for the above table, we get k to be 15; hence, the upperbound for a minimum
k is 15. This bound gets refined as we do more iterations.

3.5 Analysis

Note that cases #1, 2, 4, 8, 16 all match the theoretical guarantee. Also, comparing each
consecutive even and odd pairs reveal that cut does not help with the following excep-
tions: cases #12, 28. Mixing cut, riffle, and transposition decreases the upperbound
for minimum k. An example sequence that achieves k = 13 is the following:

{2, 2, 2, 2, 3, 1, 3, 3, 2, 3, 1, 3, 2}

where 1, 2, and 3 denote, respectively, overhand, riffle, and transposition.
It seems overhand shuffle is essentially the least effective shuffle because it requires

a lot more iterations to achieve the same total variation distance.
Also, we can obtain the following kind of typical count table corresponding to each

case. In particular, for case #31, we have:

{10, 28, 40, 44, 53, 49, 57, 44, 47, 38, 38, 17, 11, 8, 6, 1, 4, 4, 1}

This means, out of 500 iterations, we have k = 14 for 10 iterations, k = 15 for 28
iterations, and so on.

As we can observe from the table, I conjecture that combining all the shuffling
methods helps in decreasing the minimum number of shufflings required to reach the
uniform measure - in particular, the optimal shuffling is not the one obtained from
using riffle shuffle only.

Lastly, when we vary ε in log scale, we see that the minimum k changes approxi-
mately linearly. So, I conjecture that there should be a similar type of result on the
mixing time on the mixed type shuffles.

8

4 Explicit Shuffling Simulation

4.1 Introduction

In this simulation, we want to see if we can gather some statistical evidence to see if the
shuffle used in the World Series of Poker (WSOP) tournament is too “weak” to provide
the required randomness - in particular, we compare the test statistics of WSOP to
those of riffle-only and strip-only, to get a rough estimation on the number of shuffles
required to get an “equivalent” shuffle, if we are to use only a single shuffle method;
following page 1 of the 2011 World Series of Poker Official Dealer Guide [9], we define
the WSOP shuffle to be a shuffle method that has (riffle, riffle, strip, riffle, cut) as a
shuffle sequence. Since we already know some asymptotic results of riffle / strip, the
idea is to reduce down the complexity of analyzing the complex shuffle method to that
of analyzing a repeated application of a single method - for strip shuffle, we follow the
method used in the classic papers on it [10, 11], where the authors showed that it takes
Θ(n2 log n) to mix the deck of n cards. As before, we provide the code in the appendix.

4.2 Setup

Let’s make our experiment setup explicit. Suppose there are N cards to be shuffled
(of course, N=52 in a standard deck). Fix the test statistics - here, we fix it to be
the sum of the absolute difference between the next card values from 1 to N − 1; to
be completely precise, for each index i, we are considering |v(i + 1) − v(i)|. Though
I tried some variants and found this particular statistic to be the best, it might be
possible to find a better test statistics to distinguish the shuffle methods. The idea is
to compare the statistics as we change the shuffle methods, to reveal how powerful the
shuffle method is. We fix K, the number of trials (i.e., the number of times we perform
the set of shuffles per method). We repeat this experiment (a set of K trials) T times
(the fixed number of iterations). Then, we take the average of the p-values, which we
get from the standard χ2 goodness of fit test.

4.3 Result

In the table below, we provide a summary for the average of p-values as we change K
and T . For each pair (K, T), we provide the average p-values for (7 riffle, 3 riffle, 4
riffle, 50 strip, 15 strip, 30 strip, WSOP) over T experiments. We find:

(K, T) 7 riffle 3 riffle 4 riffle 50 strip 15 strip 30 strip WSOP
(100, 1000) 47.06% 45.95% 46.13% 44.64% 45.43% 47.19% 45.72%
(100, 2000) 46.13% 45.21% 45.52% 46.64% 46.75% 47.38% 45.54%)
(5000, 100) 29.71% 30.54% 26.25% 36.95% 30.05% 42.02% 22.15%
(10000, 100) 14.71% 12.74% 11.99% 19.71% 14.88% 16.85% 12.99%

In the above result, we bold the entries that correspond to the shuffle method that
has lower average p-values than the WSOP one − we see that WSOP shuffle is no

9

better than 3-4 riffle shuffles and 15-30 strip shuffles, using this statistical test. As we
can see from K=100 experiments, we should expect to see column 1 > column 3 >
column 2 and column 4 > column 6 > column 5, as we increase T ; assuming this is
going to be the case, we reduced the computation for all the other values of K to just
T = 100, to keep the computational cost minimal.

5 Variation on Overhand Shuffle

For small k, we use the comparison technique [2, 3] and the recent result on the k-cycle
shuffles [8] to get an upperbound on the k-uniform overhand shuffle; before we start,
we will make an observation of why the naive attempt of comparing to the classical
result on random-to-random shuffles fails.

5.1 Introduction

The comparison technique can be widely applied. Here, we are going to use the tech-
nique, coupled with the recent result on the k-cycle shuffles, to get a reasonable up-
perbound. Before we start, let’s define what we mean by the k-uniform shuffle first.
For a fixed k and n, we uniformly sample k numbers from 1, · · · , n and order them
as 1 ≤ a1 ≤ · · · ≤ ak ≤ n. Then, visualizing 1, · · · , n as a stack of cards and ai’s as
the cut position, we stack the deck in the reverse order. As we already saw in Section
2, we are essentially interested in A, the crucial term needed to apply the comparison
technique:

A = max
z∈E

1
p(z)

∑
y∈Sn

|y|N(z, y)p̃(y).

The first obvious approach is to try to extend the approach used in the Crude
Overhand Shuffle and Other Shuffles section of [2]. As we will see in the next section,
however, this approach fails. The next approach is to compare this with the k-cycle
shuffles, which is recently proved to have the following mixing time result:

Theorem 4. the upperbound on the mixing time that has generators as a set of k-cycle
in Sn is in the order of

n

k
log n.

The main result we wish to establish in this section is:

Theorem 5. For small k, the upperbound on the mixing time of k-uniform overhand
shuffle is in the order of n log n.

5.2 Special Case: k = n− 2

Since the k-uniform overhand shuffle is hard to analyze, we consider the following
simplified case where k = n − 2 and n > 2. We define the Markov chain on n cards
by allowing all the possible n− 1 sets of (n− 2) cut-positions to be uniformly chosen.
Using an elementary proof, we show that the cards do not mix to the uniform measure.

10

5.2.1 Notation

Before diving into the proof, to simplify the notation, let’s define some notations. In
the Boolean notation, let’s agree that 0 means the entry must be 0 and 1 means not
necessarily.

For a Boolean vector v, ¬v means to negate each element of the vector, where a
negation ¬ for a single Boolean entry is defined as ¬0 = 1 and ¬1 = 0. Now, let’s define
S(v, i, f) to be the i-times concatenation of alternating v and ¬v, where we start with
v if f = 1 and ¬v otherwise. Moreover, define the vector sequences An by A1 = [0] and
Ai = S(Ai−1, n, i mod 2) for all i > 1. Finally, define the matrix Mn by concatenating
An column-wise using each entry of An as a flag f for S; to be more precise, ith row
is of the form S(An, 1, An(i)).

Now, let’s write Sn to mean a set of all matrices of the forms either Mn or ¬Mn.
Then, we can deduce the following property of Sn:

Proposition 1. If A,B ∈ Sn then AB ∈ Sn.

Proof. Note that An ·AT
n = ∗ and An · (¬An)T = 0. Also, by symmetry, we only have

two cases to check: when A = B = Mn and A = Mn while B = ¬Mn. Call C = AB.
Note that C(i, j) =

∑
A(i, k)B(k, j). Depending on whether B = Mn or B = ¬Mn,

we see this expression is either An ·AT
n or An ·(¬An)T , which we already know are either

∗ or 0; in fact, each row C(i, ·) is of the form A(i, ·) and ¬A(i, ·), precisely depending
on i and whether B is Mn or ¬Mn. So, we conclude that C must be of the form Mn

or ¬Mn, as desired //

5.2.2 Proof of k = n− 2 case

Using the usual notation, let πn(i, j) be the transition matrix for n cards, of order
n!× n!. Then, using the result of the proposition, we need to see that πk

n ∈ Sn for any
positive integer k. This can be checked by the routine induction. First, we check the
initial transition matrix is in Sn, which is trivial since there are n− 1 non-zero entries
for each of the n! rows, all of which lies in the ∗ position.

Then, for the induction hypothesis step, we appeal to the simple property of Sn

proved above. In fact, whether we negate the matrix Mn or not depends precisely on
the parity of k. Since there is 0 entry in each row of πk

n regardless of what k is, we see
that the Markov chain cannot converge to the uniform measure, as desired.

5.3 Comparison with classical results

Say πk is the k-uniform overhand shuffle. Then, p(π) is analogously defined to be the

uniform measure with mass
1(

n+k−1
k

) if π = πk and 0 otherwise. Also, p̃(π) =
1
n2

if

π = cab for some a and b but 0 otherwise. Written in this way, even if we can bound
|π|N(πk, π) by some constant (which actually can only be bounded by O(nk−2) so

far), we will have
1
k!
· nk−2, which is, obviously, very poor bound, given the result of

Pemantle and Johansson.

11

5.4 Comparison to k-cycle

Now, let’s turn our attention to the comparison to k-cycle. As before, we define p(π)

to be the uniform measure with mass
1(

n+k−1
k

) if π = πk and 0 otherwise. Now,

p̃(π) =
1(

n
k

)
· (k − 1)!

if π = Ck but 0 otherwise. This is indeed the right mass as there

are precisely
(

n

k

)
· (k − 1)! k-cycle in Sn.

Also, since k-cycle can be written as a product of k− 1 transpositions, it suffices to
write transposition as a m composition of πk’s. Then, |π| = m · (k − 1). We have the
following Lemma:

Lemma 1. When k > 3, we have N(πk, π) ≤ 8k where |π| = 2.

Proof. When k > 3, we can always write a transposition as a composition of two πk’s;
there are 8k − 4 different representations when n = k + 1 and 8k − 12 otherwise. So,
we always have ≤ 8k, as desired. Supply with more detailed proof later.

Also, we have the following estimation:

Lemma 2. For all n ≥ k ≥ 3, we have

(
n+k−1

k

)(
n
k

)
· (k − 2)!

≤ 21.

Proof. By inspection, the peak happens when n = k = 5, with the value 21; we should
supply more detailed proof later, if necessary.

Combining this estimation yields:

τmix ≤
(
n+k−1

k

)(
n
k

)
· (k − 1)!

· 2(k − 1) · 8k · n

k
log n ≤ 21 · 2 · 8 · n log n = 336n log n

6 Future Work

In section 3, it would be interesting to develop a mathematical framework to find the
optimal shuffling sequence. In section 4, a better test function should be found to
replace the current one, if there is any. Also, the study is easily generalizable to a
shuffling other than the WSOP variant we considered in the thesis. In section 5, it
would be interesting to settle the question for any k; also, it would be interesting to
extend the analysis to shufflings of more general type.

7 Appendix

7.1 Downloads

The source code is available in either C++ or MATLAB versions from:

www.stanford.edu/∼yongwhan/math/thesis/code.zip.

12

www.stanford.edu/~yongwhan/math/thesis/code.zip

The electronic version of this thesis can be downloaded from:

www.stanford.edu/∼yongwhan/math/thesis/YLim.pdf.

7.2 Code

7.2.1 Section 3

We provide the exact code used in simulation. Note that t is the transition matrix,
mp saves the index for the permutation v, and default value for mul is 1. Also, t is
normalized at the end, using the following code:

for (int j=0; j<n; j++) {
double sum=0;
for (int k=0; k<n; k++) sum+=t[j][k];
for (int k=0; k<n; k++) t[j][k]/=sum;

}

The following code is called to get the transition matrix for each type:

// ncard: #cards in a deck
// type 0: cut
// type 1: overhand
// type 2: riffle
// type 3: transposition
// type 4: top-to-random
int get_transition_single(int ncard, int type) {

vector<int> v(ncard);
for (int i=0; i<ncard; i++) v[i]=i;

int cur=0;
do { mp[v]=cur; cur++; }
while(next_permutation(v.begin(),v.end()));

int n=cur;

for (int i=0; i<ncard; i++) v[i]=i;
cur=0;
do {

for (int j=0; j<n; j++) t[cur][j]=0;
proc(v, ncard, type, 1);
cur++;

} while(next_permutation(v.begin(),v.end()));

return n;
}

13

www.stanford.edu/~yongwhan/math/thesis/YLim.pdf

The proc function is implemented as:

void proc(vector<int> v, int ncard, int type, double mul) {
int ll=(ncard+1);
vector<int> w=v;
switch(type) {

case 0: // cut
// cout << "CUT" << endl;

for (int i=0; i<=ncard; i++) {
vector<int> w;
for (int j=0; j<ncard; j++)

w.push_back(v[(i+j)%ncard]);
t[mp[v]][mp[w]]+=mul;

}
break;

case 1: // overhand
// cout << "OVERHAND" << endl;

for (int i=0; i<(1<<ll); i++) {
vector< vector<int> > list;
int idx=0;
vector<int> cur;
for (int j=0; j<ll; j++)

if(i&(1<<j)) {
cur.clear();
for (int k=idx; k<j; k++)

cur.push_back(v[k]);
list.push_back(cur);
idx=j;

}
cur.clear();
for (int k=idx; k<ncard; k++)

cur.push_back(v[k]);
list.push_back(cur);

int ct=1;
double alpha=1;

int sz=list.size();
vector<int> w;
for (int j=sz-1; j>=0; j--) {

cur=list[j];
int l=cur.size();
ct+=l; alpha*=(1.0/ct);
for (int k=0; k<l; k++)

w.push_back(cur[k]);

14

}
if(ct!=ll) alpha*=(1.0/(ncard+1));
t[mp[v]][mp[w]]+=mul*alpha;

}
break;

case 2: // riffle
// cout << "RIFFLE" << endl;

for (int i=0; i<=ncard; i++) {
vector<int> u,w;
for (int j=0; j<i; j++)

u.push_back(v[j]);
for (int j=i; j<ncard; j++)

w.push_back(v[j]);
for (int j=0; j<(1<<ncard); j++) {

int cur=0;
for (int k=0; k<ncard;

k++)
if(j&(1<<k)) cur++;

if(cur==i) {
vector<int> vv;
int ii=0, jj=0;
for (int k=0;

k<ncard; k++) {
if(j&(1<<k)) {

vv.push_back(u[jj]); jj++; }
else {

vv.push_back(w[ii]); ii++; }
}
t[mp[v]][mp[vv]]+=mul*

C[ncard][i];
}

}
}
break;

case 3: // transposition
// cout << "TRANSPOSITION" << endl;

for (int i=0; i<ncard; i++) {
for (int j=0; j<ncard; j++) {

vector<int> w=v;
swap(w[i],w[j]);
t[mp[v]][mp[w]]+=mul;

}
}
break;

case 4: // top-to-random

15

// cout << "TOP-TO-BOTTOM" << endl;
t[mp[v]][mp[w]]+=mul;
for (int i=1; i<ncard; i++) {

swap(w[i-1],w[i]);
t[mp[v]][mp[w]]+=mul;

}
break;

default:
break;

}
}

Now, we provide the rest of the code, so that the interested readers may find it
useful for extending the above work. We provide the most up-to-date version of the
complete code here. Here is the main entry function:

int main() {
srand (time(NULL));
int n;

for (int i=0; i<MAX_SIZE; i++) {
C[i][0]=C[i][i]=1;
for (int j=1; j<i; j++) C[i][j]=C[i-1][j]+C[i-1][j-1];

}

for (int type=0; type<MAX_TYPE; type++) {
n=get_transition_single(ncard, type);

// normalize
for (int j=0; j<n; j++) {

double sum=0;
for (int k=0; k<n; k++) sum+=t[j][k];
for (int k=0; k<n; k++) t[j][k]/=sum;

}

for (int j=0; j<n; j++)
for (int k=0; k<n; k++)

cache[type][j][k]=t[j][k];
print(cache[type], n);

}

vector<int> list_type;
for (int i=MIN_RANGE; i<=MAX_RANGE; i++)

list_type.push_back(i);

16

int sz_type=list_type.size();

for (int t=1; t<(1<<sz_type); t++) {
vector<int> list_cur;
for (int c=0; c<sz_type; c++)

if(t&(1<<c)) list_cur.push_back(list_type[c]);
int sz_cur=list_cur.size();
cout << "----- ----- -----" << endl;
cout << "[[" << t << "]]" << endl;
print3(list_cur);

int iter=0, ans_=INT_MAX, iter_cur=MAX_ITER;
// vector<double> D_; vector<int> T_;
map<int, multiset< pdt > > mp_;

if(sz_cur==1) iter_cur=1;

while(iter<iter_cur) {
// initialize state by transition matrix of

randomly chosen shuffle type
int type=list_cur[get_rand(0, sz_cur-1)];
for (int j=0; j<n; j++)
for (int k=0; k<n; k++) s[j][k]=cache[type][j][k];

vector<double> D;
vector<int> T;

int ct=0;
double cur;
while(1) {

if(ct>=MAX_ITER2) break;
cur=get_dist_uniform(s,n,0);
T.push_back(type);
D.push_back(cur);

cout << ct << " " << type << " " <<
setprecision(NUM_PRECISION) << cur << endl;

if(cur<EPS) break;

type=list_cur[get_rand(0, sz_cur-1)];
mul(s,cache[type],n);
ct++;

}

17

// print distance and type sequences
print2(D);
print2(T);

int ans=T.size();
ans_=min(ans_, ans);

mp_[ans].insert(make_pair(D, T));

cout << "(" << iter << ") " << ans <<
" -> " << ans_ << endl;

iter++;
}
cout << endl;
cout << "min = " << ans_ << endl;
multiset< pdt > st=mp_[ans_];

for(multiset< pdt >::iterator it=st.begin();
it!=st.end(); it++)

print2((*it).second);

cout << endl;

get_stat(mp_);
}

return 0;
}

Here are some helper functions. This one returns the random integer between n
and m:

int get_rand(int n, int m) {
return rand()%(m-n+1) + n;

}

This function implements the multiply operator:

// multiply matrix s by matrix t and save result to s; n is a dimension
double mul(double s[MAX_DIM][MAX_DIM], double t[MAX_DIM][MAX_DIM], int n) {

double ans=0;
for (int i=0; i<n; i++) {

for (int j=0; j<n; j++) {
u[i][j]=0;
for (int k=0; k<n; k++) u[i][j]+=s[i][k]*t[k][j];
ans+=fabs(u[i][j]-s[i][j]);

}

18

}

for (int i=0; i<n; i++)
for (int j=0; j<n; j++) swap(u[i][j],s[i][j]);
ans/=(n*n); // average difference between

prev and curr in each entry
return ans;

}

This function measures the distance to the uniform measure:

// get distance from uniform measure with metric
// type 0: total variation;
double get_dist_uniform(double s[MAX_DIM][MAX_DIM], int n, int type) {

double ans=0;
switch(type) {

case 0:
for (int i=0; i<n; i++) ans+=fabs(s[0][i] - 1.0/n);
ans/=2;
break;

default: break;
}
return ans;

}

There are several print routines:

// print matrix s
void print(double s[MAX_DIM][MAX_DIM], int n) {

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {

if(j) cout << " ";
cout << setprecision(NUM_PRECISION)

<< fixed << s[i][j];
}
cout << endl;

}
}

// print vector v
template <class T>
void print2(vector<T> v) {

int sz=v.size();
cout << "{";
for (int i=0; i<sz; i++) {

if(i) cout << ", ";
cout << setprecision(NUM_PRECISION) << fixed << v[i];

19

}
cout << "}" << endl;

}

string list_name[5]={"CUT", "OVERHAND", "RIFFLE",
"TRANSPOSITION", "TOP-TO-BOTTOM"};
void print3(vector<int> v) {

int sz=v.size();
cout << "{";
for (int i=0; i<sz; i++) {

int cur=v[i];
if(i) cout << ", ";
cout << cur << " : " << list_name[cur];

}
cout << "}" << endl;

}

This one outputs the statistics:

void get_stat(map<int, multiset<pdt> > mp) {
for (map<int, multiset<pdt> >::iterator it=mp.begin();

it!=mp.end(); it++) {
cout << ") " << (*it).first << " ";
multiset<pdt> st=(*it).second;
cout << st.size() << endl;
for (multiset<pdt>::iterator it2=st.begin();

it2!=st.end(); it2++) {
print2((*it2).second);

}
}
cout << endl;

cout << "{";
bool ok=false;
for (map<int, multiset<pdt> >::iterator it=mp.begin();

it!=mp.end(); it++) {
if(ok) cout << ", ";
cout << (*it).second.size();
ok=true;

}
cout << "}" << endl;

}

Here is the header I used for my implementation:

20

#include<limits.h>
#include<time.h>
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<iomanip>
#include<utility>

#define MAX_DIM 5050
#define MAX_SIZE 20
#define MIN_RANGE 0
#define MAX_RANGE 4
#define MAX_TYPE 5
#define MAX_ITER 500
#define MAX_ITER2 100
#define NUM_PRECISION 3
#define EPS 1e-5

using namespace std;

int ncard=5;
map<vector<int>, int> mp;
double cache[MAX_TYPE][MAX_DIM][MAX_DIM], s[MAX_DIM][MAX_DIM],
t[MAX_DIM][MAX_DIM], u[MAX_DIM][MAX_DIM];

typedef pair< vector<double>, vector<int> > pdt;

7.2.2 Section 4

Here we provide the main portion of the code we used to run the above simulation. It
is implemented in MATLAB. Here is the main function:

% 100 iterations of 5000 trials of each method using
the custom method as a test statstics
clear;
init;

for T=1:N
for ITER=1:MAX_ITER

num=nums{T};
seq=seqs{T};

21

result=zeros(1,ntrial);
x_min=inf; x_max=0;
for k=1:ntrial

if mod(k,100)==0, fprintf(’%d/%d :: %d/%d :: %f%% DONE\n’,
T, N, ITER, MAX_ITER, 100*k/ntrial); end

cur=shuffle([1:ncard], seq, theta);
x=test_statistic(cur, 2);
result(k)=x;
x_min=min(x_min,x); x_max=max(x_max,x);

end
record=histc(result,[x_min:x_max])/ntrial;

[h,p,st]=gof(result, ntrial, ncard, 2);
cache_chi(T,ITER)=st.chi2stat;
cache_p(T,ITER)=p;

end
end
save([’dat_’ num2str(N) ’_’ num2str(ntrial) ’_’ num2str(MAX_ITER) ’.mat’]);

Here is the helper function to initialize variables:

ncard=52;
ntrial=100000;
MAX_ITER=5;
theta=4/51;

nums={[7 0 0 0 0 0 0 0 0], [3 0 0 0 0 0 0 0 0],
[4 0 0 0 0 0 0 0 0], [0 0 0 50 0 0 0 0 0], [0 0 0 15 0 0 0 0 0],
[0 0 0 30 0 0 0 0 0], [3 0 1 1 0 0 0 0 0]};
seqs={getseq(nums{1}), getseq(nums{2}), getseq(nums{3}),
getseq(nums{4}), getseq(nums{5}), getseq(nums{6}),
[1 1 4 1 3]};

N=numel(nums);
cache_chi=zeros(N,MAX_ITER);
cache_p=zeros(N,MAX_ITER);

Here is the helper function to shuffle the deck using the standard ones:

function tmp=shuffle(cur, seq, theta)
% 1==riffle
% 2==trans
% 3==cut
% 4==strip
% 5==hindu
% 6==wash

22

% 7==pile
% 8==mongean
% 9==faro

n=numel(seq);
tmp=cur;
for k=1:n

idx=seq(k);
if idx==1, tmp=riffle(tmp);
elseif idx==2, tmp=trans(tmp);
elseif idx==3, tmp=cut(tmp);
elseif idx==4, tmp=strip(tmp,theta);
% implement the rest
elseif idx==5, tmp=hindu(tmp);
elseif idx==6, tmp=wash(tmp);
elseif idx==7, tmp=pile(tmp);
elseif idx==8, tmp=mongean(tmp);
elseif idx==9, tmp=faro(tmp);
end

end
end

Here is the helper function for test statistics; we implemented the standard test
statistics. Also, customized ones can be used by implementing custom function.

function n=test_statistic(cur, idx)
if idx==1, n=top_card(cur);
elseif idx==2, n=custom(cur);

%implement the rest
elseif idx==3, n=descent_count(cur);
elseif idx==4, n=posA(cur);
end

end

Here is the helper function to test the goodness of fit. We used two of the most
popular choices: χ-square and χ-normal.

function [h,p,st]=gof(cur, ntrial, ncard, idx)
if idx==1, [h,p,st]=chi_uniform(cur, ntrial, ncard);
elseif idx==2, [h,p,st]=chi_normal(cur);
end

end

7.2.3 Section 5

Here I provide the code I used to get started on the proof:

#include <fstream>

23

#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
using namespace std;

#define MAX 1000

typedef long long ll;

ll mat[MAX][MAX], res[MAX][MAX], tmp[MAX][MAX];

vector<int> perm(vector<int> & v, int x) {
int sz=v.size();
vector<int> ans;
for (int i=sz-1; i>=0; i--) ans.push_back(v[i]);
swap(ans[x], ans[x+1]);
return ans;

}

int print(int n) {
int ct=0;
for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {

24

if(!res[i][j]) { cout << "0"; ct++; }
else cout << "*";

}
cout << endl;

}

return ct;
}

int main() {
int n; cin>>n;

int f=1;
for (int i=1; i<=n; i++) f*=i;

// initialize matrix
for (int i=0; i<f; i++)
for (int j=0; j<f; j++)
mat[i][j]=res[i][j]=0;

map< vector<int>, int > mp;

vector<int> cur;
for (int i=0; i<n; i++) cur.push_back(i);
int val=0;
do {
mp[cur]=val++;

} while(next_permutation(cur.begin(), cur.end()));

for (int i=0; i<n; i++) cur[i]=i;

do {
for (int i=0; i<n-1; i++) {
vector<int> key=perm(cur, i);
int x=mp[cur], y=mp[key];
if(x!=y)
res[x][y]=mat[x][y]=1;

}
} while(next_permutation(cur.begin(), cur.end()));

for (int c=0; c<100; c++) {
cout << "[" << c+1 << "]" << endl;
print(f);

25

for (int i=0; i<f; i++) {
for (int j=0; j<f; j++) {
tmp[i][j]=0;
for (int k=0; k<f; k++)
tmp[i][j]+=mat[i][k]*res[k][j];

}
}

for (int i=0; i<f; i++)
for (int j=0; j<f; j++)
res[i][j]=tmp[i][j];

}
return 0;

}

References

[1] Trailing the Dovetail Shuffle to its Lair. P. Diaconis D. Bayer, Ann. Appl. Prob.,
2(2):294-313

[2] Comparison Techniques for Random Walk on Finite Groups. P. Diaconis L. Saloff-
Coste, Ann. Prob., 21 (4):2131-2156

[3] Comparison Theorems for Reversible Markov Chains. P. Diaconis L. Saloff-Coste,
Ann. Appl. Prob, 3(3):696-730.

[4] Group Representations in Probability and Statistics. P. Diaconis, Lecture Notes-
Monograph Series (1988).

[5] Finite Fourier Methods: Access to Tools. P. Diaconis, Probabalistic combinatorics,
Proc. Symposia Appl. Math., B. Bollabos (ed), 44 Amer. Math. Soc. Providence,
R.I., 171-194.

[6] Markov Chains and Mixing Times. Levin, David Asher, Yuval Peres, and Elizabeth
Lee Wilmer. Amer Mathematical Society, 2009.

[7] Reversible Markov Chains and Random Walks on Graphs. Aldous, D. and Fill, J.
Berkeley (2002).

[8] The random k-cycle walk on the symmetric group. Bob Hough. Preprint.

[9] http://www.homepokertourney.com/docs/WSOP-Dealer-Guide-2011.pdf

[10] Randomization time for the overhand shuffle. R. Pemantle. Journal of Theoretical
Probability 2.1 (1989): 37-49.

[11] The Overhand Shuffle Mixes in Θ(n2 log n) Steps. Johan Jonasson, The Annals of
Applied Probability , Vol. 16, No. 1 (Feb., 2006), pp. 231-243

26

http://www.homepokertourney.com/docs/WSOP-Dealer-Guide-2011.pdf

	Overview
	Related Literature
	Mixing Time
	Riffle Shuffle : 32 logn +
	Overhand Shuffle : (n2 logn)

	Comparison Technique

	Optimal Shuffling Technique
	Introduction
	Explicit Computation
	Shuffling Method Types
	Result
	Analysis

	Explicit Shuffling Simulation
	Introduction
	Setup
	Result

	Variation on Overhand Shuffle
	Introduction
	Special Case: k=n-2
	Notation
	Proof of k = n-2 case

	Comparison with classical results
	Comparison to k-cycle

	Future Work
	Appendix
	Downloads
	Code
	Section 3
	Section 4
	Section 5

